A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequenc...A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.展开更多
With the rapid increase in the installed capacity of renewable energy in modern power systems,the stable operation of power systems with considerable power electronic equipment requires further investigation.In conver...With the rapid increase in the installed capacity of renewable energy in modern power systems,the stable operation of power systems with considerable power electronic equipment requires further investigation.In converter-based islanded mi-crogrid(CIM)systems equipped with grid-following(GFL)and grid-forming(GFM)voltage-source converters(VSCs),it is chal-lenging to maintain stability due to the mutual coupling effects between different VSCs and the loss of voltage and frequency sup-port from the power system.In previous studies,quantitative transient stability analysis was primarily used to assess the active power loop of GFM-VSCs.However,frequency and voltage dy-namics are found to be strongly coupled,which strongly affects the estimation result of stability boundary.In addition,the vary-ing damping terms have not been fully captured.To bridge these gaps,this paper investigates the transient stability of CIM consid-ering reactive power loop dynamics and varying damping.First,an accuracy-enhanced nonlinear model of the CIM is derived based on the effects of reactive power loop and post-disturbance frequency jump phenomena.Considering these effects will elimi-nates the risk of misjudgment.The reactive power loop dynamics make the model coefficients be no longer constant and thus vary with the power angle.To evaluate quantitatively the effects of re-active power loop and varying damping on the transient stability of CIM,an iterative criterion based on the equal area criterion theory is proposed.In addition,the effects of parameters on the stable boundary of power system are analyzed,and the dynamic interaction mechanisms are revealed.Simulation and experiment results verify the merits of the proposed method.展开更多
This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive ...This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.展开更多
This paper describes the development of a timer based voltage to frequency converter(V FC).Timer LM555is used in astable multivibrator mode with two OPTO-LDRs(light dependent resistors)in the circuitry.The frequency o...This paper describes the development of a timer based voltage to frequency converter(V FC).Timer LM555is used in astable multivibrator mode with two OPTO-LDRs(light dependent resistors)in the circuitry.The frequency of timer output waveform which is measured using a digital storage oscillator(DSO)is almost linearly proportional to the applied input voltage.Hence we obtain a linear relationship between the frequency of timer output waveform and the input voltage.Because of its quasi-digital output,the main advantages of this developed converter are linear input-output relationship,small size,easy portabilityand high cost performance.In addition,the timer output waveform can be directly interfaced with personal computer or microprocessor/microcontroller for further processing of the input voltage signal without intervening any analog-to-digital converter(ADC).展开更多
The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been c...The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.展开更多
The synchronizing torque of a power system may be weakened by increasing installation of static power converters accompanied by renewable energy resources because they used to trade their favorable active power by syn...The synchronizing torque of a power system may be weakened by increasing installation of static power converters accompanied by renewable energy resources because they used to trade their favorable active power by synchronizing their output voltage with the one at the point of common coupling. In the circumstances, a concept of Virtual Synchronous Machine (VSM) is proposed, where the self-commutated power converters are emulating synchronous generators. This paper describes a converter control to contribute to enhancing the synchronizing torque. The proposed control is similar to the VSM but it simply realizes active power trades among power generation units including converter-based generators by modulating phase angles of their output voltages. Therefore, it can provide an effective support to regulate the system frequency where the total rated power of the converter-based generators increases as much as the one of conventional rotating generators like a microgrid. This paper especially focuses on its robustness where the number of converter-based generators is increased or they are dispersed in the power network. The effectiveness is verified by simulation study based on instantaneous values.展开更多
In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that...In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.展开更多
Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established....Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i_L–v_C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that,with the increase of reference current I_(ref), the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Irefdecreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.展开更多
In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control se...In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results ...The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems.展开更多
A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After anal...A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After analyzing the loop gain's expression, which illustrates the method of selecting suitable frequency compensation for the control loop,a novel pole-zero tracking frequency compensation is proposed. Based on theoretical analysis, a DC-DC buck converter with high stability is designed with 0.5μm-CMOS technology. The simulated results reveal that the stability of the converter is independent of the load current and the input voltage. Moreover,the converter provides a full load transient response setting time of less than 5μs and overshoots and undershoots of less than 30mV.展开更多
This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also p...This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybridmode control functions at the same time.Due to the presence of the zero-current detection circuit,the converter can switch freely between the two operating modes without the need for an external mode selection circuit,which further reduces the design difficulty and chip area.The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V,while the load current range is 0.05–2 A.The circuit can work in continuous conduction mode with constant frequency in high load current range.In addition,a stable output voltage can be obtained with small voltage ripple.In pace with the load current decreases to a critical value,the converter transforms into the discontinuous conduction mode smoothly.As the switching period increases,the switching loss decreases,which can significantly improve the conversion efficiency.The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%.When the circuit switches between the two conduction modes drastically,the response time can be controlled within 30μs.The undershoot voltage is controlled within 25 mV under a large current hopping range.展开更多
Frequency support capability for the grid-connected converter(GCC)is one of the basic safeguards for the stability of renewables-dominated power systems.In this paper,analogous to the motion equation of a synchronous ...Frequency support capability for the grid-connected converter(GCC)is one of the basic safeguards for the stability of renewables-dominated power systems.In this paper,analogous to the motion equation of a synchronous generator(SG),an inertial phase-locked loop(iPLL)is proposed for GCC to achieve fast frequency support.The iPLL introduces the inertial and damping loops into the classic PLL structure to emulate the natural frequency regulation characteristics of a SG.Compared with the existing methods,the iPLL has a faster frequency response and is simpler in design and implementation.Finally,the proposed iPLL method is validated by experiments.Index Terms-Frequency support,grid-connected converter,inertial phase-locked loop(iPLL),synchronous generation(SG).展开更多
Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-po...Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-polarized turnstilejunction mode converter(TCTMC) for high-power microwave applications is presented in this paper. The input coaxial TEM mode is transformed into TE(10) mode with different phase delays in four rectangular waveguides and then converted into a circularly-polarized TE(11) circular waveguide mode. Besides, the rods are added to reduce or even eliminate the reflection. The innovations in this study are as follows. The tunning mechanism is added to the mode converter, which can change the effective length of rectangular waveguide and the distance between the rods installed upstream and the closest edge of the rectangular waveguide, thus improving the conversion efficiency and bandwidth. The conversion efficiency of TCTMC can reach above 98% over the frequency range of 1.42 GHz–2.29 GHz, and the frequency tunning bandwidth is about 47%. Significantly, TCTMC can obtain continuous high conversion efficiency of different frequency points with the change of tuning mechanism.展开更多
The multiphase boost DC-DC converter with stable control strategy is presented. Multi- phase boost DC-DC converter is designed for high voltage and high power applications, and could be achieved by the adjustment of v...The multiphase boost DC-DC converter with stable control strategy is presented. Multi- phase boost DC-DC converter is designed for high voltage and high power applications, and could be achieved by the adjustment of voltage doubler rectifiers on the secondary side of high frequency transformers. The stable control strategy for three phase boost DC-DC converter has been utilized during simulation in this study and this strategy can be extend to N-number of phases. The stable control strategy consists of only three voltage loops, which are sufficient for appropriate and efficient operation of three phase boost DC-DC converter. With the stable control strategy, the equal power balance sharing can be obtained between input and output. The stability of control strategy has been evaluated by simulating the multiphase boost DC-DC converter for the same and mismatch turn ratios of high frequency transformers. The simulation result is good and the objective of the strategy is a- chieved.展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
This paperpresents a single-stage Vernier Time-to-Digital Converter (VTDC) that utilizes the dynamic-logic phase detector. The zero dead-zone characteristic of this phase detector allows for the single-stage VTDC to d...This paperpresents a single-stage Vernier Time-to-Digital Converter (VTDC) that utilizes the dynamic-logic phase detector. The zero dead-zone characteristic of this phase detector allows for the single-stage VTDC to deliver sub-gate delay time resolution. The single-stage VTDC has been designed in 0.13μm CMOS technology. The simulation results demonstrate a linear input-output characteristic for input dynamic range from 0 to 1.6ns with a time resolution of 25ps.展开更多
文摘A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB2402700)in part by the Science and Technology Project of State Grid Corporation of China(No.52272222001J).
文摘With the rapid increase in the installed capacity of renewable energy in modern power systems,the stable operation of power systems with considerable power electronic equipment requires further investigation.In converter-based islanded mi-crogrid(CIM)systems equipped with grid-following(GFL)and grid-forming(GFM)voltage-source converters(VSCs),it is chal-lenging to maintain stability due to the mutual coupling effects between different VSCs and the loss of voltage and frequency sup-port from the power system.In previous studies,quantitative transient stability analysis was primarily used to assess the active power loop of GFM-VSCs.However,frequency and voltage dy-namics are found to be strongly coupled,which strongly affects the estimation result of stability boundary.In addition,the vary-ing damping terms have not been fully captured.To bridge these gaps,this paper investigates the transient stability of CIM consid-ering reactive power loop dynamics and varying damping.First,an accuracy-enhanced nonlinear model of the CIM is derived based on the effects of reactive power loop and post-disturbance frequency jump phenomena.Considering these effects will elimi-nates the risk of misjudgment.The reactive power loop dynamics make the model coefficients be no longer constant and thus vary with the power angle.To evaluate quantitatively the effects of re-active power loop and varying damping on the transient stability of CIM,an iterative criterion based on the equal area criterion theory is proposed.In addition,the effects of parameters on the stable boundary of power system are analyzed,and the dynamic interaction mechanisms are revealed.Simulation and experiment results verify the merits of the proposed method.
文摘This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.
文摘This paper describes the development of a timer based voltage to frequency converter(V FC).Timer LM555is used in astable multivibrator mode with two OPTO-LDRs(light dependent resistors)in the circuitry.The frequency of timer output waveform which is measured using a digital storage oscillator(DSO)is almost linearly proportional to the applied input voltage.Hence we obtain a linear relationship between the frequency of timer output waveform and the input voltage.Because of its quasi-digital output,the main advantages of this developed converter are linear input-output relationship,small size,easy portabilityand high cost performance.In addition,the timer output waveform can be directly interfaced with personal computer or microprocessor/microcontroller for further processing of the input voltage signal without intervening any analog-to-digital converter(ADC).
文摘The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.
文摘The synchronizing torque of a power system may be weakened by increasing installation of static power converters accompanied by renewable energy resources because they used to trade their favorable active power by synchronizing their output voltage with the one at the point of common coupling. In the circumstances, a concept of Virtual Synchronous Machine (VSM) is proposed, where the self-commutated power converters are emulating synchronous generators. This paper describes a converter control to contribute to enhancing the synchronizing torque. The proposed control is similar to the VSM but it simply realizes active power trades among power generation units including converter-based generators by modulating phase angles of their output voltages. Therefore, it can provide an effective support to regulate the system frequency where the total rated power of the converter-based generators increases as much as the one of conventional rotating generators like a microgrid. This paper especially focuses on its robustness where the number of converter-based generators is increased or they are dispersed in the power network. The effectiveness is verified by simulation study based on instantaneous values.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471387,61271250,and 61571460)
文摘In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376029)the Fundamental Research Funds for the Central Universities,Chinathe College Graduate Research and Innovation Program of Jiangsu Province,China(Grant No.SJLX15 0092)
文摘Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode(CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i_L–v_C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that,with the increase of reference current I_(ref), the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Irefdecreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.
文摘In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘The intermittent nature of wind and solar photovoltaic energy systems leads to the fluctuation of power generated due to the fact that the power output is highly dependent upon local weather conditions, which results to the load shading issue that led to the voltage and frequency instability. In additional to that, the high proportions of erratic renewable energy sources can lead to erratic frequency changes which affect the grid stability. In order to reduce this effect, the energy storage system is commonly used in most wind-solar energy systems to balance the voltage and frequency instability during load variations. One of the innovative energy storage systems is the compressed air energy storage system (CAES) for wind and solar hybrid energy system and this technology is the key focus in this research study. The aim of this research was to examine the system configuration of the CAES system through modelling and experimental approach with PID controller design for regulating the voltage and frequency under different load conditions. The essential elements and the entire system have been presented in this work as thorough modelling in the MATLAB/Simulink environment for different load conditions. The developed model was tested through an experimental workbench using the developed prototype of the compressed air storage in the Siemens Lab at DeKUT and explored the consequence of the working parameters on the system proficiency and the model accuracy. The performance of the system for the developed prototype of CAES system was validated using results from an experimental workbench with MATLAB/Simulink R2022b simulation. The modeling and experimental results, shows that the frequency fluctuation and voltage drop of the developed CAES system during load variations was governed by the I/P converter using a PID_Compact controller programed in the TIA Portal V17 software and downloaded into PLC S7 1200. Based on these results, the model can be applied as a basis for the performance assessment of the compressed air energy storage system so as to be included in current technology of wind and solar hybrid energy systems.
文摘A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After analyzing the loop gain's expression, which illustrates the method of selecting suitable frequency compensation for the control loop,a novel pole-zero tracking frequency compensation is proposed. Based on theoretical analysis, a DC-DC buck converter with high stability is designed with 0.5μm-CMOS technology. The simulated results reveal that the stability of the converter is independent of the load current and the input voltage. Moreover,the converter provides a full load transient response setting time of less than 5μs and overshoots and undershoots of less than 30mV.
基金supported by the National Natural Science Foundation of China(No.61974116)。
文摘This paper presents an AOT-controlled(adaptive-on-time,AOT)valley-current-mode buck converter for portable application.The buck converter with synchronous rectifier not only uses valley-current-mode control but also possesses hybridmode control functions at the same time.Due to the presence of the zero-current detection circuit,the converter can switch freely between the two operating modes without the need for an external mode selection circuit,which further reduces the design difficulty and chip area.The converter for the application of high power efficiency and wide current range is used to generate the voltage of 0.6–3.0 V with a battery source of 3.3–5.0 V,while the load current range is 0.05–2 A.The circuit can work in continuous conduction mode with constant frequency in high load current range.In addition,a stable output voltage can be obtained with small voltage ripple.In pace with the load current decreases to a critical value,the converter transforms into the discontinuous conduction mode smoothly.As the switching period increases,the switching loss decreases,which can significantly improve the conversion efficiency.The proposed AOT controlled valley current mode buck converter is integrated with standard 0.18μm process and the simulation results show that the converter provides well-loaded regulations with power efficiency over 95%.When the circuit switches between the two conduction modes drastically,the response time can be controlled within 30μs.The undershoot voltage is controlled within 25 mV under a large current hopping range.
基金supported in part by the National Natural Science Foundation of China under Grant 52277180in part by the Delta Power Electronics Science and Education Development Program of Delta Group under Grant DREG2021005。
文摘Frequency support capability for the grid-connected converter(GCC)is one of the basic safeguards for the stability of renewables-dominated power systems.In this paper,analogous to the motion equation of a synchronous generator(SG),an inertial phase-locked loop(iPLL)is proposed for GCC to achieve fast frequency support.The iPLL introduces the inertial and damping loops into the classic PLL structure to emulate the natural frequency regulation characteristics of a SG.Compared with the existing methods,the iPLL has a faster frequency response and is simpler in design and implementation.Finally,the proposed iPLL method is validated by experiments.Index Terms-Frequency support,grid-connected converter,inertial phase-locked loop(iPLL),synchronous generation(SG).
基金supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘Frequency tunability has become a subject of concern in the field of high-power microwave(HPM) source research.However, little information about the corresponding mode converter is available. A tunable circularly-polarized turnstilejunction mode converter(TCTMC) for high-power microwave applications is presented in this paper. The input coaxial TEM mode is transformed into TE(10) mode with different phase delays in four rectangular waveguides and then converted into a circularly-polarized TE(11) circular waveguide mode. Besides, the rods are added to reduce or even eliminate the reflection. The innovations in this study are as follows. The tunning mechanism is added to the mode converter, which can change the effective length of rectangular waveguide and the distance between the rods installed upstream and the closest edge of the rectangular waveguide, thus improving the conversion efficiency and bandwidth. The conversion efficiency of TCTMC can reach above 98% over the frequency range of 1.42 GHz–2.29 GHz, and the frequency tunning bandwidth is about 47%. Significantly, TCTMC can obtain continuous high conversion efficiency of different frequency points with the change of tuning mechanism.
文摘The multiphase boost DC-DC converter with stable control strategy is presented. Multi- phase boost DC-DC converter is designed for high voltage and high power applications, and could be achieved by the adjustment of voltage doubler rectifiers on the secondary side of high frequency transformers. The stable control strategy for three phase boost DC-DC converter has been utilized during simulation in this study and this strategy can be extend to N-number of phases. The stable control strategy consists of only three voltage loops, which are sufficient for appropriate and efficient operation of three phase boost DC-DC converter. With the stable control strategy, the equal power balance sharing can be obtained between input and output. The stability of control strategy has been evaluated by simulating the multiphase boost DC-DC converter for the same and mismatch turn ratios of high frequency transformers. The simulation result is good and the objective of the strategy is a- chieved.
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘This paperpresents a single-stage Vernier Time-to-Digital Converter (VTDC) that utilizes the dynamic-logic phase detector. The zero dead-zone characteristic of this phase detector allows for the single-stage VTDC to deliver sub-gate delay time resolution. The single-stage VTDC has been designed in 0.13μm CMOS technology. The simulation results demonstrate a linear input-output characteristic for input dynamic range from 0 to 1.6ns with a time resolution of 25ps.