A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder ca...A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder.展开更多
A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a...A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.展开更多
针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
基金This project supported by The National Natural Science Foundation of China(No.11872253).
文摘A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder.
文摘A chaos control strategy for chaotic current-mode boost converter is presented by using inductor current sampled feedback control technique.The quantitative analysis of control mechanism is performed by establishing a discrete alterative map of the controlled system.The stability criterion,feedback gain,and corresponding critical duty ratio are obtained from the eigenvalue of the map.The simulation results verify the t heoretical analysis results of the control strategy.
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。