期刊文献+
共找到5,004篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive predictor-based control for a helicopter system with input delays:Design and experiments
1
作者 Siri Marte Schlanbusch Jing Zhou 《Journal of Automation and Intelligence》 2024年第1期50-56,共7页
In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in con... In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme. 展开更多
关键词 Adaptive control BACKSTEPPING helicopter system Time delays
下载PDF
Numerical Study on Low-Reynolds Compressible Flows around Mars Helicopter Rotor Blade Airfoil
2
作者 Takuma Yamaguchi Masayuki Anyoji 《Journal of Flow Control, Measurement & Visualization》 CAS 2023年第2期30-48,共19页
High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. H... High-speed rotor rotation under the low-density condition creates a special low-Reynolds compressible flow around the rotor blade airfoil where the compressibility effect on the laminar separated shear layer occurs. However, the compressibility effect and shock wave generation associated with the increase in the Mach number (M) and the trend change due to their interference have not been clarified. The purpose is to clear the compressibility effect and its impact of shock wave generation on the flow field and aerodynamics. Therefore, we perform a two-dimensional unsteady calculation by Computational fluid dynamics (CFD) analysis using the CLF5605 airfoil used in the Mars helicopter Ingenuity, which succeeded in its first flight on Mars. The calculation conditions are set to the Reynolds number (Re) at 75% rotor span in hovering (Re = 15,400), and the Mach number was varied from incompressible (M = 0.2) to transonic (M = 1.2). The compressible fluid dynamics solver FaSTAR developed by the Japan aerospace exploration agency (JAXA) is used, and calculations are performed under multiple conditions in which the Mach number and angle of attack (α) are swept. The results show that a flow field is similar to that in the Earth’s atmosphere above M = 1.0, such as bow shock at the leading edge, whereas multiple λ-type shock waves are observed over the separated shear layer above α = 3° at M = 0.80. However, no significant difference is found in the C<sub>p</sub> distribution around the airfoil between M = 0.6 and M = 0.8. From the results, it is found that multiple λ-type shock waves have no significant effect on the airfoil surface pressure distribution, the separated shear layer effect is dominant in the surface pressure change and aerodynamic characteristics. 展开更多
关键词 CFD CLF5605 Rotor Blade Airfoil Compressibility Effect Low-Reynolds Number Mars helicopter Separation Bubble Shock Wave
下载PDF
Numerical Simulation of Aerodynamic Interaction Effects in Coaxial Compound Helicopters
3
作者 Maosheng Wang Yanyang Wang +1 位作者 Yihua Cao Qiang Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1301-1315,共15页
The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which re... The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio. 展开更多
关键词 Coaxial compound helicopter aerodynamic interaction numerical simulation sliding mesh method
下载PDF
Neural-Network-Based Adaptive Finite-Time Control for a Two-Degree-of-Freedom Helicopter System With an Event-Triggering Mechanism
4
作者 Zhijia Zhao Jian Zhang +2 位作者 Shouyan Chen Wei He Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1754-1765,共12页
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne... Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy. 展开更多
关键词 Adaptive neural-network control event-triggering mechanism(ETM) finite time two-degree-of-freedom helicopter
下载PDF
Disturbance Observer-Based Safe Tracking Control for Unmanned Helicopters With Partial State Constraints and Disturbances
5
作者 Haoxiang Ma Mou Chen Qingxian Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2056-2069,共14页
In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown externa... In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results. 展开更多
关键词 Disturbance observer dynamic surface control safe tracking control safety protection algorithm unmanned autonomous helicopter
下载PDF
ESPRIT-Based Feature Extraction of Helicopter Acoustic Signal
6
作者 周忠来 栗苹 +1 位作者 郑链 施聚生 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期8-14,共7页
目的提取直升机声信号谐波频率作为特征用以识别直升机.方法用旋转不变技术估计信号参数法(ESPRIT)从实测的直升机声信号中提取谐波频率,算法采用SVDTLS.结果ESPRIT方法在直升机不同的飞行条件下,用有限长... 目的提取直升机声信号谐波频率作为特征用以识别直升机.方法用旋转不变技术估计信号参数法(ESPRIT)从实测的直升机声信号中提取谐波频率,算法采用SVDTLS.结果ESPRIT方法在直升机不同的飞行条件下,用有限长度的数据准确地提取了声信号的谐波频率.结论用ESPRIT方法提取直升机声信号谐波频率是十分有效的,将谐波频率作为目标特征用以识别直升机是完全可行的. 展开更多
关键词 直升机 声信号 谐波频率 旋转不变技术估计信号参数法(ESPRIT) 特征提取
下载PDF
AERODYNAMIC ANALYSIS OF HELICOPTER SHROUDED TAIL ROTOR BY MOMENTUM THEORY
7
作者 徐国华 王适存 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1998年第2期50-54,共5页
较详细地研究了涵道尾桨的涵道与内桨的拉力分配关系。文中引入一拉力分配因子q,表示涵道尾桨的涵道拉力与总拉力之比。从动量原理出发,推导出静止(悬停)和轴流(直升机侧风)状态下的涵道尾桨拉力、需用功率与气流速度的关系式,... 较详细地研究了涵道尾桨的涵道与内桨的拉力分配关系。文中引入一拉力分配因子q,表示涵道尾桨的涵道拉力与总拉力之比。从动量原理出发,推导出静止(悬停)和轴流(直升机侧风)状态下的涵道尾桨拉力、需用功率与气流速度的关系式,分三种情况对比分析了涵道尾桨与孤立尾桨的拉力、功率和桨盘面积,得出了一些结论。结果表明,虽然在静止状态涵道尾桨的涵道提供的拉力可达总拉力的50%,但对于轴流状态、涵道尾桨的涵道的拉力增益迅速下降,取决于气流速度比。 展开更多
关键词 直升机 尾桨 涵道 空气动力分析
下载PDF
Modeling and Backstepping-based Nonlinear Control Strategy for a 6 DOF Quadrotor Helicopter 被引量:54
8
作者 Ashfaq Ahmad Mian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第3期261-268,共8页
In this article, a nonlinear model of an underactuated six degrees of freedom (6 DOF) quadrotor helicopter is derived on the basis of the Newton-Euler formalism. The derivation comprises determining equations of the... In this article, a nonlinear model of an underactuated six degrees of freedom (6 DOF) quadrotor helicopter is derived on the basis of the Newton-Euler formalism. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The derived model composed of translational and rotational subsystems is dynamically unstable, so a sequential nonlinear control strategy is used. The control strategy includes feedback linearization coupled with a PD controller for the translational subsystem and a backstepping-based PID nonlinear controller for the rotational subsystem of the quadrotor. The performances of the nonlinear control method are evaluated by nonlinear simulation and the results demonstrate the effectiveness of the proposed control strategy for the quadrotor helicopter in quasi-stationary flights. 展开更多
关键词 underactuated systems quadrotor helicopter backstepping control
下载PDF
Simulation and Analysis of Crashworthiness of Fuel Tank for Helicopters 被引量:7
9
作者 LUO Cheng LIU Hua +1 位作者 YANG Jia-ling LIU Kai-xin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第3期230-235,共6页
关键词 fuel tank CRASHWORTHINESS helicopter FEM
下载PDF
Optimal Tracking Controller Design for a Small Scale Helicopter 被引量:8
10
作者 Agus Budiyono Singgih S. Wibowo 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期271-280,共10页
A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused ... A model helicopter is more difficult to control than its full scale counterpart. This is due to its greater sensitivity to control inputs and disturbances as well as higher bandwidth of dynamics. This work is focused on designing practical tracking controller for a small scale helicopter following predefined trajectories. A tracking controller based on optimal control theory is synthesized as a part of the development of an autonomous helicopter. Some issues with regards to control constraints are addressed. The weighting between state tracking performance and control power expenditure is analyzed. Overall performance of the control design is evaluated based on its time domain histories of trajectories as well as control inputs. 展开更多
关键词 small scale helicopter optimal control tracking control rotorcraft-based UAV
下载PDF
Control System Design for an Unmanned Helicopter to Track a Ground Target 被引量:6
11
作者 XIN Zhekui FANG Yongchun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期420-427,共8页
Due to potential wide applications,the problem of utilizing an unmanned helicopter to track a ground target has become one of the most active research directions in related areas.However,in most cases,it is possible f... Due to potential wide applications,the problem of utilizing an unmanned helicopter to track a ground target has become one of the most active research directions in related areas.However,in most cases,it is possible for a dynamic target to implement evasive actions with strong maneuverability,such as a sudden turn during high-speed movement,to flee from the tracker,which then brings much difficulty for the design of tracking control systems.Currently,most research on this field focuses on utilizing a ground mobile robot to track a high-speed target.Unfortunately,it is very difficult to extend those developed methods to airborne applications due to much more complex dynamices of UAV-target relative motion.This study investiages thoroughly for the problem of using an unmanned helicopter to track a ground target,with particular emphasis on the avoidance of tracking failure caused by the evasive maneuvers of dynamic targets.Specifically,a novel control scheme,which consists of an innovative target tracking controller and a classical flight controller,is proposed for the helicopter-target tracking problem.Wherein,the tracking controller,whose design is the focus of the paper,aims to utilize the motion information of the helicopter and the dynamic target to construct a suitable trajectory for the helicopter,so that when it flies along this trajectory,the relative pose between the helicopter and the dynamic target will be kept consant.When designing the target tracking controller,a novel coordinate transformation is firstly introduced to convert the tracking system into a more compact form convenient for control law design,the desired velocities for the helicopter is then proposed with consideration of the dynamic constraint.The stability of the closed-loop system is finally analyzed by Lyapunov techniques.Based on Matlab/Simulink environment,two groups of simulation are conducted for the helicopter-target tracking control system where the target moves along a linear path and takes a sudden turn during high-speed movement,respectively.As shown by the simulation results,both the distance error and the pointing error are bounded during the tracking process,and they are convergent to zero when the target moves straightly.Moreover,the tracking performance can be adjusted properly to avoid tracking failure due to evasive maneuvers of the target,so as to guarantee superior tracking performance for all kinds of dynamic targets. 展开更多
关键词 unmanned helicopter trajectory plan target tracking
下载PDF
Adaptive Control Based on Neural Networks for an Uncertain 2-DOF Helicopter System With Input Deadzone and Output Constraints 被引量:11
12
作者 Yuncheng Ouyang Lu Dong +1 位作者 Lei Xue Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期807-815,共9页
In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertaintie... In this paper, a study of control for an uncertain2-degree of freedom(DOF) helicopter system is given. The2-DOF helicopter is subject to input deadzone and output constraints. In order to cope with system uncertainties and input deadzone, the neural network technique is introduced because of its capability in approximation. In order to update the weights of the neural network, an adaptive control method is utilized to improve the system adaptability. Furthermore, the integral barrier Lyapunov function(IBLF) is adopt in control design to guarantee the condition of output constraints and boundedness of the corresponding tracking errors. The Lyapunov direct method is applied in the control design to analyze system stability and convergence. Finally, numerical simulations are conducted to prove the feasibility and effectiveness of the proposed control based on the model of Quanser's 2-DOF helicopter. 展开更多
关键词 2-degree of FREEDOM (DOF) helicopter adaptive control INPUT DEADZONE integral barrier Lyapunov function neural networks output constraints
下载PDF
Feedback linearization of the nonlinear model of a small-scale helicopter 被引量:7
13
作者 Baoquan SONG Yunhui LIU Caizhi FAN 《控制理论与应用(英文版)》 EI 2010年第3期301-308,共8页
In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for h... In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller. 展开更多
关键词 Feedback linearization Nonlinear model Model helicopter
下载PDF
Adaptive Backstepping Tracking Control of a 6-DOF Unmanned Helicopter 被引量:9
14
作者 Bin Xian Jianchuan Guo Yao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期19-24,共6页
This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties. The control objective is to let the helicopter track some pre-defined position and yaw tra... This paper presents an adaptive backstepping control design for a class of unmanned helicopters with parametric uncertainties. The control objective is to let the helicopter track some pre-defined position and yaw trajectories. In order to facilitate the control design, we divide the helicopter s dynamic model into three subsystems. The proposed controller combines the backstepping method with online parameter update laws to achieve the control objective. The global asymptotical stability(GAS) of the closed-loop system is proved by a Lyapunov based stability analysis. Numerical simulations demonstrate that the controller can achieve good tracking performance in the presence of parametric uncertainties. 展开更多
关键词 Unmanned helicopter adaptive backstepping control trajectory tracking parametric uncertainty
下载PDF
NONLINEAR INVERSE SIMULATION FOR THE MANEUVERING FLIGHT OF COAXIAL ROTOR HELICOPTERS 被引量:3
15
作者 Cao Yihua (Institute of Aircraft Design, Beijing University of Aeronautics and Astronautics, Beijing, 100083, China) G. Reichert (Technical University of Braunschweig, 38106 Braunschweig, Germany) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第4期2-9,共8页
The maneuvering flight governing equations for coaxial rotor helicopters are established. By introducing induced velocity interference factor analysis, the coaxial rotor aerodynamic interference can be taken into acc... The maneuvering flight governing equations for coaxial rotor helicopters are established. By introducing induced velocity interference factor analysis, the coaxial rotor aerodynamic interference can be taken into account. With the combination of coaxial rotor helicopter control features and nonlinear inverse solution technique, the governing equations for maneuvering flight can be solved so as to determine helicopter control input, control force and moment, and helicopter body attitudes which are needed for performing the defined maneuver. Finally, as an example of this methods engineering application, the calculated results with level turn, lateral jink maneuvers are presented and simply analyzed. 展开更多
关键词 helicopters rotor aerodynamics MANEUVERS FLIGHT inverse simulation
下载PDF
Nonlinear Intelligent Flight Control for Quadrotor Unmanned Helicopter 被引量:6
16
作者 甄子洋 浦黄忠 +1 位作者 陈琦 王新华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期29-34,共6页
Quadrotor unmanned helicopter is a new popular research platform for unmanned aerial vehicle(UAV),thanks to its simple construction,vertical take-off and landing(VTOL)capability.Here a nonlinear intelligent flight con... Quadrotor unmanned helicopter is a new popular research platform for unmanned aerial vehicle(UAV),thanks to its simple construction,vertical take-off and landing(VTOL)capability.Here a nonlinear intelligent flight control system is developed for quadrotor unmanned helicopter,including trajectory control loop composed of co-controller and state estimator,and attitude control loop composed of brain emotional learning(BEL)intelligent controller.BEL intelligent controller based on mammalian middle brain is characterized as self-learning capability,model-free and robustness.Simulation results of a small quadrotor unmanned helicopter show that the BEL intelligent controller-based flight control system has faster dynamical responses with higher precision than the traditional controller-based system. 展开更多
关键词 quadrotor unmanned helicopter flight control brain emotional learning(BEL) intelligent control
下载PDF
Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model 被引量:2
17
作者 王赓 Kondak Konstantin +3 位作者 Marek Musial 盛焕烨 吕恬生 Hommel Günter 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期744-752,共9页
It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that... It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts: orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented. 展开更多
关键词 unmanned helicopter DYNAMICAL model FLIGHT control unmanned AERIAL vehicle (UAV)
下载PDF
Study on the Effect of Two-Dimensional Helicopter V-buoy’s Way of Water Entry on Water Impact 被引量:2
18
作者 Qingtong Chen Guanggen Yang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第3期91-96,共6页
To analyze the effect of the way of water entry on water impact, the FLUENT software was adopted to simulate a two-dimensional (2D) helicopter V-buoy’s free fall and forced fall at a constant velocity.Combining with ... To analyze the effect of the way of water entry on water impact, the FLUENT software was adopted to simulate a two-dimensional (2D) helicopter V-buoy’s free fall and forced fall at a constant velocity.Combining with the UDF program and the dynamic mesh model, the standard k-ε turbulence model was used and the VOF technique was adopted to capture free surface.The physical parameters such as velocity and force were calculated and compared with those results of boundary element method with good agreement obtained.It was found that the force of 2D V-buoy at a constant velocity was much greater than that in free fall motion.Meanwhile, the maximum pressure coefficients C p max in both cases were almost equal and the dimensionless water-entry depths y' corresponding to C p max were also similar. 展开更多
关键词 helicopter 2D V-buoy the WAY of WATER entry WATER impact FLUENT VOF
下载PDF
Numerical Simulation of Aerodynamic Characteristics of Helicopter Rotor with Tip Slots 被引量:1
19
作者 Chen Rongqian Wang Xu +2 位作者 Cheng Qiyou Zhu Chengxiang You Yancheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期942-951,共10页
Effects of tip slots on the aerodynamic characteristics of helicopter rotor were investigated numerically by solving three-dimensional Navier-Stokes equations based on unstructured overset grids algorithm.Improved del... Effects of tip slots on the aerodynamic characteristics of helicopter rotor were investigated numerically by solving three-dimensional Navier-Stokes equations based on unstructured overset grids algorithm.Improved delayed detached eddy simulation (IDDES) based on the Spalart-Allmaras turbulence model and adaptive grid refinement technique were employed.Several slots in the rotor blade tip were designed on the base of Caradonna-Tung rotor to study the effect of tip slots.Numerical results show that tip slots are able to introduce the airflow from the leading edge and turn it in the spanwise direction to be ejected out of the face at the rotor blade tip,which can reduce the strength of the rotor blade tip vortex and accelerate the dissipation process.Although tip slots may lead to the decrease of airfoils' lift coefficient at the root of the rotor blade,it can increase the lift coefficient of airfoils at the rotor blade tip,so the lift of the rotor with tip slots is almost the same as that of the rotor without tip slots.In addition,tip slots can also reduce the intensity of the tip shock wave,which is beneficial to reduce the wave drag of the rotor. 展开更多
关键词 TIP SLOTS tip-vortex alleviation helicopter ROTOR NUMERICAL simulation
下载PDF
Review on Key Techniques of Dynamics Modeling for Helicopter Simulator 被引量:1
20
作者 Gu Hongbin Fu Jun Hu Jinshuo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第6期-,共10页
We review the state of the art of dynamic modeling methods for helicopter simulators.Major dynamic models,including ARMCOP,GENHEL,FLYRT,BEMAP,F-B412 and UTIAS,are introduced.We address off-axis response problem by foc... We review the state of the art of dynamic modeling methods for helicopter simulators.Major dynamic models,including ARMCOP,GENHEL,FLYRT,BEMAP,F-B412 and UTIAS,are introduced.We address off-axis response problem by focusing on flexible blade model,Pitt-Peters dynamic inflow model,Peters-He finite state inflow model and free wake model which are integrated with the baseline model.With the advances in computing power,efficient free-vortex algorithms and parallel processing,free wake model can be used to simulate in real-time and significantly improves the effectiveness of solving off-axis response problem. 展开更多
关键词 helicopter dynamic model off-aixs response
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部