Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a sin...Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.展开更多
For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on t...For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on the ground.In this paper,we establish a special WSN in the sky to address this challenge,where each sensor is loaded on an unmanned aerial vehicle(UAV)and the operation center of all the UAVs is fixed on the ground.Based on the analyzing of the optimal distribution and the position error calibration of all the sensors,we formulate the localization scheme to estimate the position of the target source,which combines the time difference of arrival(TDOA)method and the frequency difference of arrival(FDOA)method.Then by employing the semidefinite programming approach,we accurately obtain the position and velocity of the signal source.In the simulation,the validity of the proposed method is verified through the performance comparison.展开更多
Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended...Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.展开更多
Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the...Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.展开更多
A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position erro...A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.展开更多
In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-sourc...In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.展开更多
Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to...Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to achieve satisfactory accuracy in realistic environments due to multipath effects and non-line-of-sight(NLOS)propagation.In this paper,we propose a passive anchor assisted localization(PAAL)scheme,where the active anchor obtains TOA/AOA measurements to the agent while the passive anchors capture the signals from the active anchor and agent.The proposed method fully exploits the time-difference-of-arrival(TDOA)information from the measurements at the passive anchors to complement single-anchor joint TOA/AOA localization.The performance limits of the PAAL system are derived as a benchmark via the information inequality.Moreover,we implement the PAAL system on a low-cost UWB platform,which can achieve 20 cm localization accuracy in NLOS environments.展开更多
In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localizati...In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.展开更多
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo...Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.展开更多
The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localizat...The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.展开更多
The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimat...The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimation. According to the characteristic, the algorithm for acoustic passive localization based on the azimuth angle and geometry position of the two arrays is derived to estimate the target distance, and the simulation for the factors that affect the localization precision also proceeds. The result of the simulation shows the precision of localization estimation with dual arrays is superior to that of single array, and the passive localization algorithm based on dual array can meet the practical demands.展开更多
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron dopin...In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.展开更多
In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that cons...In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.展开更多
This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be convenie...This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa- ter vehicles and deployed for adaptive spatial sampling. However, the use of such small aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho- rizontal linear array is used to passively localize acoustic sources in shallow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en- vironmental mismatch and enhance the stability of the estimation process. The proposed approach's ability to localize acoustic sources in shallow water at different signal-to-noise ratios is examined through the synthetic test cases where the sources are located at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a constant depth.展开更多
The misreading problem of a passive ultra-high-frequency(UHF)radio frequency identification(RFID)tag is a frequent problem arising in the field of librarianship.Unfortunately,existing solutions are something inefficie...The misreading problem of a passive ultra-high-frequency(UHF)radio frequency identification(RFID)tag is a frequent problem arising in the field of librarianship.Unfortunately,existing solutions are something inefficient,e.g.,extra resource requirement,inaccuracy,and empiricism.To this end,under comprehensive analysis on the passive UHF RFID application in the librarianship scenario,a novel and judicious approach based on RFID localization is proposed to address such a misreading problem.Extensive simulation results show that the proposed approach can outperform the existing ones and can be an attractive candidate in practice.展开更多
The acceleration grid power supply(AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor,which includes a 3-phase passive(diode) rectifier.To diagnose a...The acceleration grid power supply(AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor,which includes a 3-phase passive(diode) rectifier.To diagnose and localize faults in the rectifier,this paper proposes a frequencydomain analysis-based fault diagnosis algorithm for the rectifier in AGPS.First,time-domain expressions and spectral characteristics of the output voltage of the TPTL-NPC inverter-based power supply are analyzed.Then,frequency-domain analysis-based fault diagnosis and frequency-domain analysis-based sub-fault diagnosis algorithms are proposed to diagnose open circuit(OC) faults of diode(s),which benefit from the analysis of harmonics magnitude and phase-angle of the output voltage.Only a fundamental period is needed to diagnose and localize exact faults,and a strong Variable-duration Fault Detection Method is proposed to identify acceptable ripple from OC faults.Detailed simulations and experimental results demonstrate the effectiveness,quickness,and robustness of the proposed algorithms,and the diagnosis algorithms proposed in this article provide a significant method for the fault diagnosis of other rectifiers and converters.展开更多
In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and...In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system.展开更多
Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron ...Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron spectroscopy(AES)and atomic absorption spectrometry(AAS). Cyclic polarization showed that the pitting potential in a thiosulfate solution was much lower than in either a chloride solution or a sulfate-chloride solution. Mott-Schottky results revealed that passive films showed n-type semiconductivity, and the presence of thiosulfate in chloride solution led to an increased donor density in the passive film. EIS spectra indicated that thiosulfate enhanced the film dissolution rate in chloride solutions. Moreover, thiosulfate enhanced the pitting propagation rate in chloride solution by stabilizing the metastable pits and forming sulfide within the pits.展开更多
In order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. Fi...In order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. First, the aforementioned passive localization problem is transferred to the DSMRTLS problem by deriving a multiplicative structure for both the observation matrix and the observation vector. Second, the corresponding optimization problem of the DSMRTLS problem without constraint is derived, which can be approximated as the generalized Rayleigh quotient minimization problem. Then, the localization solution which is globally optimal and asymptotically unbiased can be got by generalized eigenvalue decomposition. Simulation results verify the rationality of the approximation and the good performance of the proposed algorithm compared with several typical algorithms.展开更多
Passive source localization via a maximum likelihood (ML) estimator can achieve a high accuracy but involves high calculation burdens, especially when based on time-of-arrival and frequency-of-arrival measurements f...Passive source localization via a maximum likelihood (ML) estimator can achieve a high accuracy but involves high calculation burdens, especially when based on time-of-arrival and frequency-of-arrival measurements for its internal nonlinearity and nonconvex nature. In this paper, we use the Pincus theorem and Monte Carlo importance sampling (MCIS) to achieve an approximate global solution to the ML problem in a computationally efficient manner. The main contribution is that we construct a probability density function (PDF) of Gaussian distribution, which is called an important function for efficient sampling, to approximate the ML estimation related to complicated distributions. The improved performance of the proposed method is at- tributed to the optimal selection of the important function and also the guaranteed convergence to a global maximum. This process greatly reduces the amount of calculation, but an initial solution estimation is required resulting from Taylor series expansion. However, the MCIS method is robust to this prior knowledge for point sampling and correction of importance weights. Simulation results show that the proposed method can achieve the Cram6r-Rao lower bound at a moderate Gaussian noise level and outper- forms the existing methods.展开更多
基金supported by the National Natural Science Foun-dation of China(No.62027801)。
文摘Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.
基金supported by The Science and Technology Innovation Team Plan of Shaanxi Province (2017-KCT-30-02)The Key Research and Development Program of Shaanxi Province (2018GY-150)+1 种基金The Foundation Research Project of Shaanxi Province (The Natural Science Fund. 2018JQ6093)The Science and Technology Plan Project of Xi’an City (201805040YD18CG24-3)
文摘For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on the ground.In this paper,we establish a special WSN in the sky to address this challenge,where each sensor is loaded on an unmanned aerial vehicle(UAV)and the operation center of all the UAVs is fixed on the ground.Based on the analyzing of the optimal distribution and the position error calibration of all the sensors,we formulate the localization scheme to estimate the position of the target source,which combines the time difference of arrival(TDOA)method and the frequency difference of arrival(FDOA)method.Then by employing the semidefinite programming approach,we accurately obtain the position and velocity of the signal source.In the simulation,the validity of the proposed method is verified through the performance comparison.
基金supported by the National Natural Science Foundation of China (61703433)。
文摘Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.
基金supported by the 10th Five-year Defense Pre-Research Fund of China (No.51405020305BQ0110).
文摘Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.
基金supported by the Aeronautical Science Foundation of China (20105584004)the Science and Technology on Avionics Integration Laboratory
文摘A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.
基金This work was supported by the National Natu-ral Science Foundation of China(No.U20B2038,No.61901520,No.61871398 and No.61931011),the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030),and the National Key R&D Program of China under Grant 2018YFB1801103.
文摘In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.
文摘Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to achieve satisfactory accuracy in realistic environments due to multipath effects and non-line-of-sight(NLOS)propagation.In this paper,we propose a passive anchor assisted localization(PAAL)scheme,where the active anchor obtains TOA/AOA measurements to the agent while the passive anchors capture the signals from the active anchor and agent.The proposed method fully exploits the time-difference-of-arrival(TDOA)information from the measurements at the passive anchors to complement single-anchor joint TOA/AOA localization.The performance limits of the PAAL system are derived as a benchmark via the information inequality.Moreover,we implement the PAAL system on a low-cost UWB platform,which can achieve 20 cm localization accuracy in NLOS environments.
文摘In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.
文摘Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.
文摘The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.
基金Sponsored by the Ministerial Level Advanced Research Foundation (9153C6753029532C667)
文摘The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimation. According to the characteristic, the algorithm for acoustic passive localization based on the azimuth angle and geometry position of the two arrays is derived to estimate the target distance, and the simulation for the factors that affect the localization precision also proceeds. The result of the simulation shows the precision of localization estimation with dual arrays is superior to that of single array, and the passive localization algorithm based on dual array can meet the practical demands.
基金Funded by the National Natural Science Foundation of China(61366004)the Research Fund for the Doctoral Program of Higher Education(20123601110006)the Jiangxi Provincial Department of Education(KJLD13008)
文摘In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.
文摘In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.
基金supported by the State Scholarship Fund(2011611091)supported by China Shipbuilding Industry Corporation
文摘This paper presents an approach to the challenging is- sue of passive source localization in shallow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa- ter vehicles and deployed for adaptive spatial sampling. However, the use of such small aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho- rizontal linear array is used to passively localize acoustic sources in shallow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en- vironmental mismatch and enhance the stability of the estimation process. The proposed approach's ability to localize acoustic sources in shallow water at different signal-to-noise ratios is examined through the synthetic test cases where the sources are located at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a constant depth.
文摘The misreading problem of a passive ultra-high-frequency(UHF)radio frequency identification(RFID)tag is a frequent problem arising in the field of librarianship.Unfortunately,existing solutions are something inefficient,e.g.,extra resource requirement,inaccuracy,and empiricism.To this end,under comprehensive analysis on the passive UHF RFID application in the librarianship scenario,a novel and judicious approach based on RFID localization is proposed to address such a misreading problem.Extensive simulation results show that the proposed approach can outperform the existing ones and can be an attractive candidate in practice.
基金supported by the National Key R&D Program of China(No.2017YFE0300104)National Natural Science Foundation of China(No.51821005)
文摘The acceleration grid power supply(AGPS) is a crucial part of the Negative-ion Neutral Beam Injection system in the China Fusion Engineering Test Reactor,which includes a 3-phase passive(diode) rectifier.To diagnose and localize faults in the rectifier,this paper proposes a frequencydomain analysis-based fault diagnosis algorithm for the rectifier in AGPS.First,time-domain expressions and spectral characteristics of the output voltage of the TPTL-NPC inverter-based power supply are analyzed.Then,frequency-domain analysis-based fault diagnosis and frequency-domain analysis-based sub-fault diagnosis algorithms are proposed to diagnose open circuit(OC) faults of diode(s),which benefit from the analysis of harmonics magnitude and phase-angle of the output voltage.Only a fundamental period is needed to diagnose and localize exact faults,and a strong Variable-duration Fault Detection Method is proposed to identify acceptable ripple from OC faults.Detailed simulations and experimental results demonstrate the effectiveness,quickness,and robustness of the proposed algorithms,and the diagnosis algorithms proposed in this article provide a significant method for the fault diagnosis of other rectifiers and converters.
文摘In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system.
基金Supported by the Atomic Energy of Canada Limited(AECL)and National Natural Science Foundation of China(No.51371124)
文摘Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron spectroscopy(AES)and atomic absorption spectrometry(AAS). Cyclic polarization showed that the pitting potential in a thiosulfate solution was much lower than in either a chloride solution or a sulfate-chloride solution. Mott-Schottky results revealed that passive films showed n-type semiconductivity, and the presence of thiosulfate in chloride solution led to an increased donor density in the passive film. EIS spectra indicated that thiosulfate enhanced the film dissolution rate in chloride solutions. Moreover, thiosulfate enhanced the pitting propagation rate in chloride solution by stabilizing the metastable pits and forming sulfide within the pits.
基金co-supported by Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China(No.20105584004)
文摘In order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. First, the aforementioned passive localization problem is transferred to the DSMRTLS problem by deriving a multiplicative structure for both the observation matrix and the observation vector. Second, the corresponding optimization problem of the DSMRTLS problem without constraint is derived, which can be approximated as the generalized Rayleigh quotient minimization problem. Then, the localization solution which is globally optimal and asymptotically unbiased can be got by generalized eigenvalue decomposition. Simulation results verify the rationality of the approximation and the good performance of the proposed algorithm compared with several typical algorithms.
基金Project supported by the National Natural Science Foundation of China (No. 61201381 ) and the China Postdoctoral Science Foundation (No. 2016M592989)
文摘Passive source localization via a maximum likelihood (ML) estimator can achieve a high accuracy but involves high calculation burdens, especially when based on time-of-arrival and frequency-of-arrival measurements for its internal nonlinearity and nonconvex nature. In this paper, we use the Pincus theorem and Monte Carlo importance sampling (MCIS) to achieve an approximate global solution to the ML problem in a computationally efficient manner. The main contribution is that we construct a probability density function (PDF) of Gaussian distribution, which is called an important function for efficient sampling, to approximate the ML estimation related to complicated distributions. The improved performance of the proposed method is at- tributed to the optimal selection of the important function and also the guaranteed convergence to a global maximum. This process greatly reduces the amount of calculation, but an initial solution estimation is required resulting from Taylor series expansion. However, the MCIS method is robust to this prior knowledge for point sampling and correction of importance weights. Simulation results show that the proposed method can achieve the Cram6r-Rao lower bound at a moderate Gaussian noise level and outper- forms the existing methods.