期刊文献+
共找到7,360篇文章
< 1 2 250 >
每页显示 20 50 100
Self-propelled Leidenfrost droplets on femtosecond-laser-induced surface with periodic hydrophobicity gradient
1
作者 Bohong Li Lan Jiang +2 位作者 Xiaowei Li Zhipeng Wang Peng Yi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期502-509,共8页
The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly re... The controllable transfer of droplets on the surface of objects has a wide application prospect in the fields of microfluidic devices,fog collection and so on.The Leidenfrost effect can be utilized to significantly reduce motion resistance.However,the use of 3D structures limits the widespread application of self-propulsion based on Leidenfrost droplets in microelectromechanical system.To manipulate Leidenfrost droplets,it is necessary to create 2D or quasi-2D geometries.In this study,femtosecond laser is applied to fabricate a surface with periodic hydrophobicity gradient(SPHG),enabling directional self-propulsion of Leidenfrost droplets.Flow field analysis within the Leidenfrost droplets reveals that the vapor layer between the droplets and the hot surface can be modulated by the SPHG,resulting in directional propulsion of the inner gas.The viscous force between the gas and liquid then drives the droplet to move. 展开更多
关键词 SELF-PROPELLED Leidenfrost droplets periodic hydrophobicity gradient femtosecond laser fabrication
下载PDF
Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions 被引量:6
2
作者 Chongyan Liu Guangming Zhao +4 位作者 Wensong Xu Xiangrui Meng Zhixi Liu Xiang Cheng Gang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期275-287,共13页
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial... Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity. 展开更多
关键词 single-sided unloading Acoustic emission True triaxial Intermediate principal stress Stress intensity factor
下载PDF
Reduced graphene oxide aerogel decorated with Mo_(2)C nanoparticles toward multifunctional properties of hydrophobicity,thermal insulation and microwave absorption 被引量:3
3
作者 Yahui Wang Minghui Zhang +5 位作者 Xuesong Deng Zhigang Li Zongsheng Chen Jiaming Shi Xijiang Han Yunchen Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期536-547,共12页
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr... Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions. 展开更多
关键词 Mo_(2)C/reduced graphene oxide aerogel microwave absorption dielectric loss hydrophobicity thermal insulation
下载PDF
Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions
4
作者 Yingxiang Ni Can Yuan +5 位作者 Shilong Li Jian Lu Lei Yan Wei Gu Weihong Xing Wenheng Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期59-62,共4页
Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophil... Although hydrophilic membranes are desired for reducing resistance to water permeation, hydrophilic surfaces are not used in the water-in-oil(W/O) membrane emulsification process because water spreads on the hydrophilic surface without forming droplets. Here, we report that a hydrophilic ceramic membrane can form a hydrophobic interface in diesel at a higher temperature;interestingly, the experiments show that the contact angle increases when the temperature rises. The hydrophilic membrane surface evolves into a hydrophobic interface, particularly near the boiling point of water, resulting in a water contact angle of 147.5° ± 1.2°. This work established a method for preparing W/O monodispersed emulsions by direct emulsification of hydrophilic ceramic membranes at a temperature close to the boiling point of water.Additionally, it made high flux of membrane emulsification of monodispersed W/O emulsions possible,which satisfied the industrial requirements of fluidized catalytic cracking in the petrochemical industry. 展开更多
关键词 Membrane emulsification Ceramic membrane hydrophobic interface W/O emulsions
下载PDF
Enhancing hydrophobicity via core-shell metal organic frameworks for high-humidity flue gas CO_(2) capture
5
作者 Yinji Wan Dekai Kong +9 位作者 Feng Xiong Tianjie Qiu Song Gao Qiuning Zhang Yefan Miao Mulin Qin Shengqiang Wu Yonggang Wang Ruiqin Zhong Ruqiang Zou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期82-89,共8页
Developing metal-organic framework(MOF)materials with the moisture-resistant feature is highly desirable for CO_(2)capture from highly humid flue gas.In this work,a new core-shell MOF@MOF composite using Mg-MOF-74 wit... Developing metal-organic framework(MOF)materials with the moisture-resistant feature is highly desirable for CO_(2)capture from highly humid flue gas.In this work,a new core-shell MOF@MOF composite using Mg-MOF-74 with high CO_(2)capture capacity as a functional core and hydrophobic zeolitic imidazolate framework-8(ZIF-8)as a protective shell is fabricated by the epitaxial growth method.Experimental results show that the CO_(2)adsorption performance of the core-shell structured Mg-MOF-74@ZIF-8 composites from water-containing flue gas is enhanced along with their improved hydrophobicity.The dynamic breakthrough results show that the Mg-MOF-74@ZIF-8 with three assembled layers(Mg-MOF-74@ZIF-8-3)can capture 3.56 mmol-g^(-1)CO_(2)from wet CO_(2)/N_(2)(VCO_(2):V_(N_(2))=15:85)mixtures,which outperforms Mg-MOF-74(0.37 mmol·g^(-1))and most of the reported physisorbents. 展开更多
关键词 CORE-SHELL Mg-MOF-74@ZIF-8 CO_(2)capture hydrophobic effect
下载PDF
A micro-crosslinked amphoteric hydrophobic association copolymer as high temperature-and salt-resistance fluid loss reducer for water-based drilling fluids
6
作者 Jian Li Yu-Xi Ji +3 位作者 Xiao-Xiao Ni Kai-He Lv Xian-Bin Huang Jin-Sheng Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1980-1991,共12页
During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtr... During ultradeep oil and gas drilling,fluid loss reducers are highly important for water-based drilling fluids,while preparing high temperature-and salt-resistance fluid loss reducers with excellent rheology and filtration performance remains a challenge.Herein,a micro-crosslinked amphoteric hydrophobic association copolymer(i.e.,DADC)was synthesized using N,N-dimethyl acrylamide,diallyl dimethyl ammonium chloride,2-acrylamido-2-methylpropane sulfonic acid,hydrophobic monomer,and pentaerythritol triallyl ether crosslinker.Due to the synergistic effects of hydrogen bonds,electrostatic interaction,hydrophobic association,and micro-crosslinking,the DADC copolymer exhibited outstanding temperature-and salt-resistance.The rheological experiments have shown that the DADC copolymer had excellent shear dilution performance and a certain degree of salt-responsive viscosity-increasing performance.The DADC copolymer could effectively adsorb on the surface of bentonite particles through electrostatic interaction and hydrogen bonds,which bring more negative charge to the bentonite,thus improving the hydration and dispersion of bentonite particles as well as the colloidal stability of the drilling fluids.Moreover,the drilling fluids constructed based on the DADC copolymer exhibited satisfactory rheological and filtration properties(FLHTHP=12 m L)after aging at high temperatures(up to200℃)and high salinity(saturated salt)environments.Therefore,this work provided new insights into designing and fabricating high-performance drilling fluid treatment agents,demonstrating good potential applications in deep and ultradeep drilling engineering. 展开更多
关键词 Fluid loss reducer Temperature-and salt-resistance hydrophobic association AMPHOTERIC Micro-crosslinking
下载PDF
Reconcile the contradictory wettability requirements for the reduction and oxidation half-reactions in overall CO_(2) photoreduction via alternately hydrophobic surfaces
7
作者 Hailing Huo Ting Hu +9 位作者 Chengxi Huang Fang Wu Tongyu Wang Xuan Liu Liang Zhang Qiang Ju Zhiqing Zhong Hongbin Xing Erjun Kan Ang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期202-212,I0006,共12页
The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR inv... The overall photocatalytic CO_(2) reduction reaction(OPCRR)that can directly convert CO_(2) and H_(2)O into fuels represents a promising renewable energy conversion technology.As a typical redox reaction,the OPCRR involves two half-reactions:the CO_(2) reduction half-reaction(CRHR)and the water oxidation half-reaction(WOHR).Generally,both half-reactions can be promoted by adjusting the wettability of catalysts.However,there is a contradiction in wettability requirements for the two half-reactions.Specifically,CRHR prefers a hydrophobic surface that can accumulate more CO_(2) molecules on the active sites,ensuring the appropriate ratio of gas-phase(CO_(2))to liquid-phase(H_(2)O)reactants.Conversely,the WOHR prefers a hydrophilic surface that can promote the departure of the gaseous product(O_(2))from the catalyst surface,preventing isolation between active sites and the reactant(H_(2)O).Here,we successfully reconciled the contradictory wettability requirements for the CRHR and WOHR by creating an alternately hydrophobic catalyst.This was achieved through a selectively hydrophobic modification method and a charge-transfer-control strategy.Consequently,the collaboratively promoted CRHR and WOHR led to a significantly enhanced OPCRR with a solar-to-fuel conversion efficiency of 0.186%.Notably,in ethanol production,the catalyst exhibited a 10.64-fold increase in generation rate(271.44μmol g^(-1)h~(-1))and a 4-fold increase in selectivity(55.77%)compared to the benchmark catalyst.This innovative approach holds great potential for application in universal overall reactions involving gas participation. 展开更多
关键词 hydrophobIC HYDROPHILIC Gas transport Overall CO_(2)photoreduction Z-scheme
下载PDF
Engineering hydrophobic protective layers on zinc anodes for enhanced performance in aqueous zinc-ion batteries
8
作者 Taofeng Li Suxia Yan +12 位作者 Hongyu Dong Yang Zheng Kun Ming Ying Chen Haitao Li Guochun Li Zhixia He Weimin Li Quan Wang Xiaohui Song Junfeng Liu Edison Huixiang Ang Yong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期1-11,I0001,共12页
Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.I... Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.In our investigation,we sought to mitigate these issues through the utilization of in situ zinc complex formation reactions to engineer hydrophobic protective layers on the zinc anode surface.These robust interfacial layers serve as effective barriers,isolating the zinc anode from the electrolyte and active water molecules and thereby preventing hydrogen evolution and the generation of undesirable byproducts.Additionally,the presence of numerous zincophilic sites within these protective layers facilitates uniform zinc deposition while concurrently inhibiting dendrite growth.Through comprehensive evaluation of functional anodes featuring diverse functional groups and alkyl chain lengths,we meticulously scrutinized the underlying mechanisms influencing performance variations.This analysis involved precise modulation of interfacial hydrophobicity,rapid Zn^(2+)ion transport,and ordered deposition of Zn^(2+)ions.Notably,the optimized anode,fabricated with octadecylphosphate(OPA),demonstrated exceptional performance characteristics.The Zn//Zn symmetric cell exhibited remarkable longevity,exceeding 4000 h under a current density of 2 mA cm^(-2)and a capacity density of 2 mA h cm^(-2),Furthermore,when integrated with a VOH cathode,the complete cell exhibited superior capacity retention compared to anodes modified with alternative organic molecules. 展开更多
关键词 Aqueous zinc-ion batteries hydrophobic protective layers Zinc anode stability Dendrite growth inhibition Energy storage
下载PDF
Development of Superhydrophobic Nano-SiO_(2)and Its Field Application in Low-permeability,High-temperature,and High-salinity Oil Reservoirs
9
作者 Qin Bing Gao Min +4 位作者 Lei Xue Zhao Lin Zhu Qizhi Meng Fanbin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期1-14,共14页
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second... In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d. 展开更多
关键词 nano-SiO_(2)particle hydrophobic modification enhanced injection operation low-grade reservoir low permeability oilfield
下载PDF
HYDROPHOBICITY OF CONTAMINATED SILICONE RUBBER SURFACES 被引量:2
10
作者 Zhi-min Zheng Cai-hong Xu +3 位作者 Jian Jiang Chang-yu Ren Wei Gao Ze-min Xie Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第6期559-564,共6页
Silicone rubber (SIR) shows superior performance when used outdoors, but its surface can be transformed from inherently hydrophobic to hydrophilic by the adsorption of contaminants. Al(OH)(3), Al2O3, quartz powder and... Silicone rubber (SIR) shows superior performance when used outdoors, but its surface can be transformed from inherently hydrophobic to hydrophilic by the adsorption of contaminants. Al(OH)(3), Al2O3, quartz powder and active carbon were selected as authentic contaminants. Hydrophobicity of the surface was determined using contact angle measurement. The results indicate that the adsorbability of the contaminants can strongly affect the hydrophobicity of contaminated SIR surface. The increasing rate of contact angle of specimens contaminated by Al(OH)(3) was much faster than that by Al2O3 and quartz due to the adsorption of migrated low molecular weight (LMW) polydimethylsiloxanes. Specimens contaminated by active carbon could achieve surface hydrophobicity within 15 min because active carbon has high adsorbability. Surfaces of contaminated ultrapure SIR, polytetrafluoroethylene (PTFE) and glass remain hydrophilic because they contain no mobile LMW components. The addition of oligomeric polydimethylsiloxanes has little effect on the hydrophobicity of contaminants covered on SIR surface. 展开更多
关键词 hydrophobicity silicone rubber contact angle CONTAMINATION
下载PDF
HYDROPHOBICITY-HYDROPHILICITY BALANCE RELATIONSHIPSFORCOLLECTORLESSFLOTATIONOFSULPHIDEMINERALS 被引量:1
11
作者 Sun Shuiyu Wang Dianzuo Li Bodan(Department of Mineral Engineering, Central South University of Technology, Changsha, 410083, China) 《Journal of Central South University》 SCIE EI CAS 1994年第1期68-73,共6页
HYDROPHOBICITY-HYDROPHILICITYBALANCERELATIONSHIPSFORCOLLECTORLESSFLOTATIONOFSULPHIDEMINERALSHYDROPHOBICITY-H... HYDROPHOBICITY-HYDROPHILICITYBALANCERELATIONSHIPSFORCOLLECTORLESSFLOTATIONOFSULPHIDEMINERALSHYDROPHOBICITY-HYDROPHILICITYBALA... 展开更多
关键词 hydrophobicity HYDROPHILICITY BALANCE INDUCTION FLOTATION
下载PDF
Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide 被引量:1
12
作者 Nil Baran Acarali Melek Bardakci +2 位作者 Nurcan Tugrul Emek Moroydor Derun Sabriye Piskin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期574-581,共8页
The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction param... The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120~C), cooling temperature (10-80~C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (lwt%-6wt%), and oleic acid (OA, lwt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate. 展开更多
关键词 zinc borate zinc oxide hydrophobicity YIELD
下载PDF
Synthesis, characterizations and hydrophobicity of micro/nano scaled heptadecafluorononanoic acid decorated copper nanoparticle 被引量:1
13
作者 Hung-Hsia Chen R.Anbarasan +3 位作者 Long-Sheng Kuo Meng-Yu Tsai Ping-Hei Chen Kuei-Feng Chiang 《Nano-Micro Letters》 SCIE EI CAS 2010年第2期101-105,共5页
Copper nanoparticle was synthesized in the presence of heptadecafluorononanoic acid by the conventional solution immersion method at room temperature from the copper plate, as a resource material. The bulk etching rat... Copper nanoparticle was synthesized in the presence of heptadecafluorononanoic acid by the conventional solution immersion method at room temperature from the copper plate, as a resource material. The bulk etching rate was calculated by the weight loss method. The pale green colored Cu-HDFN was characterized by Fourier transform infrared spectroscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and contact angle measurements and the results are critically analyzed. 展开更多
关键词 Copper nanoparticle ETCHING hydrophobicity
下载PDF
Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber 被引量:4
14
作者 Ruobing ZHANG Qianting HAN +1 位作者 Yan XIA Shuang LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第10期75-82,共8页
An atmospheric-pressure plasma jet array specially designed for HTV silicone rubber treatment is reported in this paper. Stable plasma containing highly energetic active particles was uniformly generated in the plasma... An atmospheric-pressure plasma jet array specially designed for HTV silicone rubber treatment is reported in this paper. Stable plasma containing highly energetic active particles was uniformly generated in the plasma jet array. The discharge pattern was affected by the applied voltage. The divergence phenomenon was observed at low gas flow rate and abated when the flow rate increased.Temperature of the plasma plume is close to room temperature which makes it feasible for temperature-sensitive material treatment. Hydrophobicity of contaminated HTV silicone rubber was significantly improved after quick exposure of the plasma jet array, and the effective treatment area reached 120 mm?×?50 mm(length?×?width). Reactive particles in the plasma accelerate accumulation of the hydrophobic molecules, namely low molecular weight silicone chains, on the contaminated surface, which result in a hydrophobicity improvement of the HTV silicone rubber. 展开更多
关键词 atmospheric-pressure plasma jet plasma jet array hydrophobicity HTV silicone rubber
下载PDF
Facile Fabrication of Cellulosic Paper-based Composites with Temperature-controlled Hydrophobicity and Excellent Mechanical Strength 被引量:6
15
作者 Tongtong Yun Yilin Wang +3 位作者 Jie Lu Yi Cheng Yanna Lyu Haisong Wang 《Paper And Biomaterials》 2020年第2期20-27,共8页
In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber... In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber was thermally melted and then coated on the cellulose surface to achieve hydrophobicity.Experimental results revealed that the thermocoating ES fibers greatly increased the water contact angle of the cellulose scaffold from 25°to 153°while simultaneously enhanced the wet tensile strength of the composite approximately 6.7-fold(drying temperature of 170℃)compared with the pure cellulose paper.In particular,compared with other related research,the prepared cellulose-based composite possessed excellent hydrophobicity and superior mechanical strength,which introduces a new chemical engineering approach to prepare hydrophobic cellulose-based functional materials. 展开更多
关键词 CELLULOSE ES fiber PAPER-BASED COMPOSITES hydrophobicity mechanical strength
下载PDF
Construction of Self-Assembly Based Tunable Absorber:Lightweight,Hydrophobic and Self-Cleaning Properties 被引量:12
16
作者 Zehua Zhou Qianqian Zhu +3 位作者 Yue Liu Yan Zhang Zirui Jia Guanglei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期148-163,共16页
Although multifunctional aerogels are expected to be used in applications such as portable electronic devices,it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent mic... Although multifunctional aerogels are expected to be used in applications such as portable electronic devices,it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent microstructure.Herein,a simple method is proposed to prepare multifunctional NiCo/C aerogels with excellent electromagnetic wave absorption properties,superhydrophobicity,and self-cleaning by water-induced NiCo-MOF self-assembly.Specifically,the impedance matching of the three-dimensional(3D)structure and the interfacial polarization provided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption.As a result,the prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm.Due to the presence of hydrophobic functional groups,CoNi/C aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles>140°.This multifunctional aerogel has promising applications in electromagnetic wave absorption,resistance to water or humid environments. 展开更多
关键词 MOF aerogel SELF-CLEANING Electromagnetic wave absorption hydrophobIC
下载PDF
Characteristics Investigation of Single-Sided Ironless PMLSM Based on Halbach Array for Medium-Speed Maglev Train 被引量:5
17
作者 Zhihua Zhang Liming Shi +1 位作者 Ke Wang Yaohua Li 《CES Transactions on Electrical Machines and Systems》 2017年第4期375-382,共8页
This paper investigates characteristics of ironless permanent magnet linear synchronous motor(PMLSM)based on Halbach array used for medium-speed(200km/h)maglev train.Long primary ironless coil is laid in the middle of... This paper investigates characteristics of ironless permanent magnet linear synchronous motor(PMLSM)based on Halbach array used for medium-speed(200km/h)maglev train.Long primary ironless coil is laid in the middle of track and the Halbach permanent magnet array is attached to the bottom of each bogie as a source of traction,U-shape electromagnets at the both sides of the train for levitation.Two dimensional analytical model of single-sided ironless PMLSM based on Halbach array is established,using linear overlay method,the no-load air gap magnetic field is calculated firstly,winding current density distribution is obtained for calculating the characteristics of thrust and normal force against power angle,including force characteristics with equal and unequal pole pitch,the influence of steel sleeper,etc.Besides,the mathematical model for this type motor is built by 3D finite element method,the traction characteristics of medium-speed maglev under maximum speed 200km/h are calculated.The characteristics of this type motor are satisfactory owing to there is no detent force in the motor and thrust force reach maximum meanwhile normal force can be eliminated.Calculation method is verified by comparing finite element results,experimental result on a 200kW type motor further validates the accuracy of calculation and some important conclusions are obtained. 展开更多
关键词 Fore characteristics Halbach array medium-speed Maglev single-sided ironless PMLSM.
下载PDF
Ordered silicon nanorod arrays with controllable geometry and robust hydrophobicity
18
作者 王子文 蔡家琦 +2 位作者 吴以治 王会杰 许小亮 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期507-510,共4页
Highly ordered silicon nanorod(Si NR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality meta... Highly ordered silicon nanorod(Si NR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality metal mask is to construct a non-close-packed template that can be removed with negligible damage to the mask. Hydrophobicity of Si NR arrays of different geometries is also studied. It is shown that the nanorod structures are effectively quasi-hydrophobic with a contact angle as high as 142°, which would be useful in self-cleaning nanorod-based device applications. 展开更多
关键词 silicon nanorod array hydrophobicity SELF-CLEANING metal-assisted chemical etching
下载PDF
Improving the anti-collapse performance of water-based drilling fluids of Xinjiang Oilfield using hydrophobically modified silica nanoparticles with cationic surfactants 被引量:2
19
作者 He Li Xian-Bin Huang +3 位作者 Jin-Sheng Sun Kai-He Lv Xu Meng Zhen Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1768-1778,共11页
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of... Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs. 展开更多
关键词 hydrophobic nanoparticle Wetting alteration Wellbore stability Water-based drilling fluids SHALE
下载PDF
Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air
20
作者 方志 邱毓昌 +1 位作者 王辉 E.KUFFEL 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第5期582-586,共5页
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity u... Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment, The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CHa and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly. 展开更多
关键词 non-thermal plasma dielectric barrier discharge (DBD) surface treatment hydrophobicity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部