A novel approach based on the quantitative phase field model was proposed to calculate the interface mobility and applied to the α/β interface of a ternary Ti-6Al-4V alloy.Phase field simulations indicate that the h...A novel approach based on the quantitative phase field model was proposed to calculate the interface mobility and applied to the α/β interface of a ternary Ti-6Al-4V alloy.Phase field simulations indicate that the higher interface mobility leads to the faster transformation rate,but only a unique value of interface mobility matches the diffusion equation under the diffusion-controlled condition.By comparing the transformation kinetics from phase field simulations with that from classical diffusion equation,the interface mobility at different temperatures can be obtained.The results show that the calculated interface mobility increases with increasing temperature and accords with Arrhenius equation very well.展开更多
The temperature gradients that arise in the paraelectric-ferroelectric interface dynamics induced by the latent heat transfer are studied from the point of view that a ferroelectric phase transition is a stationary, t...The temperature gradients that arise in the paraelectric-ferroelectric interface dynamics induced by the latent heat transfer are studied from the point of view that a ferroelectric phase transition is a stationary, thermal-electric coupled transport process. The local entropy production is derived for a ferroelectric phase transition system from the Gibbs equation. Three types of regions in the system are described well by using the Onsager relations and the principle of minimum entropy production. The theoretical results coincides with the experimental ones.展开更多
Over the past decades, topological interface states have attracted significant attention in classical wave systems. Generally, research on the topological interface states of elastic waves is conducted in the lattices...Over the past decades, topological interface states have attracted significant attention in classical wave systems. Generally, research on the topological interface states of elastic waves is conducted in the lattices with symmetric elements. This paper proposes composite lattices with/without symmetric elements, and demonstrates the realization of tunable topological interface states of elastic waves via parametric systems.To quantize the topological characteristics of the bands, a modified Zak phase is defined to calculate the topological invariant by the eigenstates for the lattices with/without symmetric elements. The numerical results show that the tunable frequencies of topological interface states can be realized in composite lattices with/without symmetric elements through the modulation of the parametric excitation frequency. The tunable topological interface states can be introduced into the vibration energy harvesting to design efficient and steady energy harvesting systems.展开更多
The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformati...Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformation from L12 (Ni3Al) to DO22 (Ni3V) in Ni75AlxV25-x alloys are explored, using the simulated microstructure evolution pictures and the occupation probability evolution of alloy elements at the interface. The results show that five kinds of heterointerfaces are formed between DO22 and L12 phase and four of them can migrate during the phase transformation from L12 to DO22 except the interface (002)D//(001)L. The structure of interface (100)D//(200)L and interface (100)D//(200)L·^1/2[001] remain the same before and after migration, while the interface (002)D//(002)L is formed after the migration of interface (002)D//(002)L·^1/2[100] and vice versa. These two kinds of interface appear alternatively. The jump and substitute of atoms selects the optimization way to induce the migration of interface during the phase transformation, and the number of atoms needing to jump during the migration is the least among all of the possible atom jump modes.展开更多
Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alterna...Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.展开更多
The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the sla...The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases(anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.展开更多
Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure...Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.展开更多
The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by pha...The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure.展开更多
The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr18Ni11Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials ...The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr18Ni11Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials was developed, and the related mechanisms were studied. The results indicated that there was small wet-ability of the 1Cr18Ni11Nb alloy on TiO, and the interface binding strength of 1Cr18Ni11Nb/TiO was low. 1.5%Si in 1Cr18Ni11Nb could not only make the alloy wet TiO, but also lead to mutual dissolving near the interface, forming high interface binding strength and matching with the thermal expansion coefficient of TiO.展开更多
The segregation of Mg to phase interfaces in a nickel base superalloy IN 100 has been investi- gated using EPT(Electron Microprobe Technique).AES(Auger Electron Spectroscopy) and EDS analyses on thin TEM film.The resu...The segregation of Mg to phase interfaces in a nickel base superalloy IN 100 has been investi- gated using EPT(Electron Microprobe Technique).AES(Auger Electron Spectroscopy) and EDS analyses on thin TEM film.The results show that Mg segregates to the phase inter- faces of MC/γ and γ′/γ.The segregation concentration and layer thickness of Mg on MC/γ phase interface are larger than that on γ′/γ phase interface.Mg is not only a grain boundary segregation element,but also a phase interface segregation one.展开更多
In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic mi...In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic micrographies,tests of dynamic mechanical properties,moisture regain and vapor permeability.Furthermore,the formation of microvoids at interfacesof separated phases was discussed and a microvoid formation mechanism at phase interfaces ofhydrophobic-hydrophilic blends was suggested and compared with that ofhydrophobic-hydrophobic blends.展开更多
The interface evolution of TiAl/Ti6242 joint produced by transient liquid phase(TLP) bonding with Ti, Cu foils as insert metals was investigated. The results show that the surface oxide layer on TiAl plays a very impo...The interface evolution of TiAl/Ti6242 joint produced by transient liquid phase(TLP) bonding with Ti, Cu foils as insert metals was investigated. The results show that the surface oxide layer on TiAl plays a very important role in the formation process of the joint. A ‘bridge’ effect is observed because of the presence of the oxide layer on the surface of TiAl. The diffusion behavior of Cu atoms in TiAl is strongly controlled by the vacancies beneath the surface of TiAl. Based on the interface diffusion and interface wettability, a mechanism for the effect of bonding pressure, bonding temperature, holding time and stacking sequence of the insert foils on the joint formation process were proposed.展开更多
In this study,three weight vectors L1,L2 and L3 were set.After calculating the probability of three bases in the exons or introns in the genomic DNA of Arabidopsis thaliana,64-dimensional vector P was obtained.Dot pro...In this study,three weight vectors L1,L2 and L3 were set.After calculating the probability of three bases in the exons or introns in the genomic DNA of Arabidopsis thaliana,64-dimensional vector P was obtained.Dot products of P vector and three weight vectors were the feature coordinates for the exons and introns in 3-dimensional phase space.The expression for the interface between the exons and the introns in the genomic DNA of Arabidopsis thaliana in 3-dimensional phase space was established,which could be used to distinguish the exons and the introns in the genomic DNA of Arabidopsis thaliana with an accuracy higher than85%in 3-dimensional phase space.展开更多
TiAl has been joined employing the transient liquid phase (TLP) bonding with Ti combined with Cu, Ni or Fe foils. Experimental results showed that though the interface structures of the joints are quite different, a...TiAl has been joined employing the transient liquid phase (TLP) bonding with Ti combined with Cu, Ni or Fe foils. Experimental results showed that though the interface structures of the joints are quite different, all the joined zones are composed of five sublayers, i.e. two diffusion zones, two interfacial zones and an interlayer. It has been convinced that the formation process of the transient liquid phase controls the diffusion behavior of melting point depressant (MPD) Cu, Ni, and Fe atoms, which leads to form different interface structures of the joints.展开更多
Biphenylene is a new topological material that has attracted much attention recently.By amplifying its size of unit cell,we construct a series of planar structures as homogeneous carbon allotropes in the form of polyp...Biphenylene is a new topological material that has attracted much attention recently.By amplifying its size of unit cell,we construct a series of planar structures as homogeneous carbon allotropes in the form of polyphenylene networks.We first use the low-energy effective model to prove the topological three periodicity for these allotropes.Then,through first-principles calculations,we show that the topological phase has the Dirac point.As the size of per unit cell increases,the influence of the quaternary rings decreases,leading to a reduction in the anisotropy of the system,and the Dirac cone undergoes a transition from type II to type I.We confirm that there are two kinds of non-trivial topological phases with gapless and gapped bulk dispersion.Furthermore,we add a built-in electric field to the gapless system by doping with B and N atoms,which opens a gap for the bulk dispersion.Finally,by manipulating the built-in electric field,the dispersion relations of the edge modes will be transformed into a linear type.These findings provide a hopeful approach for designing the topological carbon-based materials with controllable properties of edge states.展开更多
Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior.The controlling of the oxygen vacancy formation proces...Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior.The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice.Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite(BM)phase in a model oxide La_(0.7)Sr_(0.3)MnO_(3)(LSMO).Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO.Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO.Using the NiO nominal ratio as a single control parameter,we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase,which enables systematic tuning of magnetic and electrical transport properties.The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.展开更多
At present there is no explanation of the nature of interface instability upon first order phase transitions. The well-known theory of concentration overcooling under directed crystallization of solutions and Mullins-...At present there is no explanation of the nature of interface instability upon first order phase transitions. The well-known theory of concentration overcooling under directed crystallization of solutions and Mullins-Sekerka instability cannot account for the diversified liquid component redistribution during solid state transition. In [1-3], within the framework of the nonequilibrium mass transfer problem, it has been shown that there are regimes of the interface instability, which differ from the known ones [4-6]. Moreover, the instability theory of works [1-3] demonstrates a complete experimental agreement of the dependence of eutectic pattern period on interface velocity. However, it is difficult to explain interface instability within the framework of a general setting of the mass-transfer problem. This paper is de-voted to qualitative analysis of the phenomena that are responsible for interface instability. The phenomena are connected by a single equation. Qualitative analysis revealed a variety of different conditions responsible for instability of flat interface stationary movement upon phase transition. The type of instability depends on system parameters. It is important that interface instability in the asymptotic case of quasi-equilibrium problem setting is qualitatively different from interface instability in the case of nonequilibrium problem setting.展开更多
基金Project (51101059) supported by the National Natural Science Foundation of ChinaProject (20110490874) supported by the China Postdoctoral Science Foundation
文摘A novel approach based on the quantitative phase field model was proposed to calculate the interface mobility and applied to the α/β interface of a ternary Ti-6Al-4V alloy.Phase field simulations indicate that the higher interface mobility leads to the faster transformation rate,but only a unique value of interface mobility matches the diffusion equation under the diffusion-controlled condition.By comparing the transformation kinetics from phase field simulations with that from classical diffusion equation,the interface mobility at different temperatures can be obtained.The results show that the calculated interface mobility increases with increasing temperature and accords with Arrhenius equation very well.
文摘The temperature gradients that arise in the paraelectric-ferroelectric interface dynamics induced by the latent heat transfer are studied from the point of view that a ferroelectric phase transition is a stationary, thermal-electric coupled transport process. The local entropy production is derived for a ferroelectric phase transition system from the Gibbs equation. Three types of regions in the system are described well by using the Onsager relations and the principle of minimum entropy production. The theoretical results coincides with the experimental ones.
基金Project supported by the National Natural Science Foundation of China (Nos. 62188101 and 11902097)。
文摘Over the past decades, topological interface states have attracted significant attention in classical wave systems. Generally, research on the topological interface states of elastic waves is conducted in the lattices with symmetric elements. This paper proposes composite lattices with/without symmetric elements, and demonstrates the realization of tunable topological interface states of elastic waves via parametric systems.To quantize the topological characteristics of the bands, a modified Zak phase is defined to calculate the topological invariant by the eigenstates for the lattices with/without symmetric elements. The numerical results show that the tunable frequencies of topological interface states can be realized in composite lattices with/without symmetric elements through the modulation of the parametric excitation frequency. The tunable topological interface states can be introduced into the vibration energy harvesting to design efficient and steady energy harvesting systems.
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金Funded by the National Natural Science Foundation of China (Nos.50941020, 10902086, 50875217, and 20903075)Natural Science Foundation of Shaanxi Province (Nos. SJ08-ZT05 and SJ08-B14)Doctorate Foundation of Northwest Polytechnical University (No. CX200905)
文摘Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformation from L12 (Ni3Al) to DO22 (Ni3V) in Ni75AlxV25-x alloys are explored, using the simulated microstructure evolution pictures and the occupation probability evolution of alloy elements at the interface. The results show that five kinds of heterointerfaces are formed between DO22 and L12 phase and four of them can migrate during the phase transformation from L12 to DO22 except the interface (002)D//(001)L. The structure of interface (100)D//(200)L and interface (100)D//(200)L·^1/2[001] remain the same before and after migration, while the interface (002)D//(002)L is formed after the migration of interface (002)D//(002)L·^1/2[100] and vice versa. These two kinds of interface appear alternatively. The jump and substitute of atoms selects the optimization way to induce the migration of interface during the phase transformation, and the number of atoms needing to jump during the migration is the least among all of the possible atom jump modes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404133 and 11374121)the Program of Science and Technology Development Plan of Jilin Province,China(Grant No.20140520105JH)
文摘Interface and scale effects are the two most important factors which strongly affect the structure and the properties of nano-/micro-crystals under pressure.We conduct an experiment under high pressure in situ alternating current impedance to elucidate the effects of interface on the structure and electrical transport behavior of two Zn Se samples with different sizes obtained by physical grinding.The results show that(i) two different-sized Zn Se samples undergo the same phase transitions from zinc blend to cinnabar-type phase and then to rock salt phase;(ii) the structural transition pressure of the859-nm Zn Se sample is higher than that of the sample of 478 nm,which indicates the strong scale effect.The pressure induced boundary resistance change is obtained by fitting the impedance spectrum,which shows that the boundary conduction dominates the electrical transport behavior of Zn Se in the whole experimental pressure range.By comparing the impedance spectra of two different-sized Zn Se samples at high pressure,we find that the resistance of the 478-nm Zn Se sample is lower than that of the 859-nm sample,which illustrates that the sample with smaller particle size has more defects which are due to physical grinding.
基金supported by the Open Research Fund of the Key Laboratory for Ferrous Metallurgy and Resources Utilization of the Ministry of EducationWuhan University of Science and Technology (FMRU2007K10)
文摘The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases(anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
基金Projects(50671084, 50875217) supported by the National Natural Science Foundation of ChinaProjects(2003E106, SJ08-ZT05) supported by the Natural Science Foundation of Shaanxi Province, ChinaProject(20070420218) supported by China Postdoctoral Science Foundation
文摘Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.
基金Project supported by the National Natural Science Foundation of China(Grant No.51571122)the Fundamental Research Funds for the Central UniversitiesChina(Grant No.30920130121012)
文摘The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure.
文摘The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr18Ni11Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials was developed, and the related mechanisms were studied. The results indicated that there was small wet-ability of the 1Cr18Ni11Nb alloy on TiO, and the interface binding strength of 1Cr18Ni11Nb/TiO was low. 1.5%Si in 1Cr18Ni11Nb could not only make the alloy wet TiO, but also lead to mutual dissolving near the interface, forming high interface binding strength and matching with the thermal expansion coefficient of TiO.
文摘The segregation of Mg to phase interfaces in a nickel base superalloy IN 100 has been investi- gated using EPT(Electron Microprobe Technique).AES(Auger Electron Spectroscopy) and EDS analyses on thin TEM film.The results show that Mg segregates to the phase inter- faces of MC/γ and γ′/γ.The segregation concentration and layer thickness of Mg on MC/γ phase interface are larger than that on γ′/γ phase interface.Mg is not only a grain boundary segregation element,but also a phase interface segregation one.
文摘In this paper,morphological structure,thermodynamic compatibility and relationship be-tween porosities and blend ratios of the wet coagulated PU/PVA sheets were studied by meansof observation of scanning electronic micrographies,tests of dynamic mechanical properties,moisture regain and vapor permeability.Furthermore,the formation of microvoids at interfacesof separated phases was discussed and a microvoid formation mechanism at phase interfaces ofhydrophobic-hydrophilic blends was suggested and compared with that ofhydrophobic-hydrophobic blends.
文摘The interface evolution of TiAl/Ti6242 joint produced by transient liquid phase(TLP) bonding with Ti, Cu foils as insert metals was investigated. The results show that the surface oxide layer on TiAl plays a very important role in the formation process of the joint. A ‘bridge’ effect is observed because of the presence of the oxide layer on the surface of TiAl. The diffusion behavior of Cu atoms in TiAl is strongly controlled by the vacancies beneath the surface of TiAl. Based on the interface diffusion and interface wettability, a mechanism for the effect of bonding pressure, bonding temperature, holding time and stacking sequence of the insert foils on the joint formation process were proposed.
基金Supported by Eleventh Five-Year Development Planning For Instructional Science in Hubei Province(2006B131)
文摘In this study,three weight vectors L1,L2 and L3 were set.After calculating the probability of three bases in the exons or introns in the genomic DNA of Arabidopsis thaliana,64-dimensional vector P was obtained.Dot products of P vector and three weight vectors were the feature coordinates for the exons and introns in 3-dimensional phase space.The expression for the interface between the exons and the introns in the genomic DNA of Arabidopsis thaliana in 3-dimensional phase space was established,which could be used to distinguish the exons and the introns in the genomic DNA of Arabidopsis thaliana with an accuracy higher than85%in 3-dimensional phase space.
文摘TiAl has been joined employing the transient liquid phase (TLP) bonding with Ti combined with Cu, Ni or Fe foils. Experimental results showed that though the interface structures of the joints are quite different, all the joined zones are composed of five sublayers, i.e. two diffusion zones, two interfacial zones and an interlayer. It has been convinced that the formation process of the transient liquid phase controls the diffusion behavior of melting point depressant (MPD) Cu, Ni, and Fe atoms, which leads to form different interface structures of the joints.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074156 and 12164023)the Yunnan Local College Applied Basic Research Projects (Grant No.2021Y710)。
文摘Biphenylene is a new topological material that has attracted much attention recently.By amplifying its size of unit cell,we construct a series of planar structures as homogeneous carbon allotropes in the form of polyphenylene networks.We first use the low-energy effective model to prove the topological three periodicity for these allotropes.Then,through first-principles calculations,we show that the topological phase has the Dirac point.As the size of per unit cell increases,the influence of the quaternary rings decreases,leading to a reduction in the anisotropy of the system,and the Dirac cone undergoes a transition from type II to type I.We confirm that there are two kinds of non-trivial topological phases with gapless and gapped bulk dispersion.Furthermore,we add a built-in electric field to the gapless system by doping with B and N atoms,which opens a gap for the bulk dispersion.Finally,by manipulating the built-in electric field,the dispersion relations of the edge modes will be transformed into a linear type.These findings provide a hopeful approach for designing the topological carbon-based materials with controllable properties of edge states.
基金the support by National Natural Science Foundation of China(Grant No.62004200)Zhejiang Provincial Natural Science Foundation(Grant No.LZ21F040001)+1 种基金the support by Q-MEEN-Cfunded by the U.S.DOE-BES under award No.DE-SC0019273.
文摘Engineering oxygen vacancy formation and distribution is a powerful route for controlling the oxygen sublattice evolution that affects diverse functional behavior.The controlling of the oxygen vacancy formation process is particularly important for inducing topotactic phase transitions that occur by transformation of the oxygen sublattice.Here we demonstrate an epitaxial nanocomposite approach for exploring the spatial control of topotactic phase transition from a pristine perovskite phase to an oxygen vacancy-ordered brownmillerite(BM)phase in a model oxide La_(0.7)Sr_(0.3)MnO_(3)(LSMO).Incorporating a minority phase NiO in LSMO films creates ultrahigh density of vertically aligned epitaxial interfaces that strongly influence the oxygen vacancy formation and distribution in LSMO.Combined structural characterizations reveal strong interactions between NiO and LSMO across the epitaxial interfaces leading to a topotactic phase transition in LSMO accompanied by significant morphology evolution in NiO.Using the NiO nominal ratio as a single control parameter,we obtain intermediate topotactic nanostructures with distinct distribution of the transformed LSMO-BM phase,which enables systematic tuning of magnetic and electrical transport properties.The use of self-assembled heterostructure interfaces by the epitaxial nanocomposite platform enables more versatile design of topotactic phase structures and correlated functionalities that are sensitive to oxygen vacancies.
文摘At present there is no explanation of the nature of interface instability upon first order phase transitions. The well-known theory of concentration overcooling under directed crystallization of solutions and Mullins-Sekerka instability cannot account for the diversified liquid component redistribution during solid state transition. In [1-3], within the framework of the nonequilibrium mass transfer problem, it has been shown that there are regimes of the interface instability, which differ from the known ones [4-6]. Moreover, the instability theory of works [1-3] demonstrates a complete experimental agreement of the dependence of eutectic pattern period on interface velocity. However, it is difficult to explain interface instability within the framework of a general setting of the mass-transfer problem. This paper is de-voted to qualitative analysis of the phenomena that are responsible for interface instability. The phenomena are connected by a single equation. Qualitative analysis revealed a variety of different conditions responsible for instability of flat interface stationary movement upon phase transition. The type of instability depends on system parameters. It is important that interface instability in the asymptotic case of quasi-equilibrium problem setting is qualitatively different from interface instability in the case of nonequilibrium problem setting.