This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the lim...This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.展开更多
Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted aver...Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted average and geometric aggregation operators for the modelling of a multiple criteria decision making(MCDM)technique in an inconsistent and indeterminate circumstance.To realize the aims,this paper first proposes the trigonometric t-norm and t-conorm operational laws of SvNNs,which contain the hybrid operations of the tangent and arctangent functions and the cotangent and inverse cotangent functions,and presents the SvNN trigonometric weighted average and geometric operators and their properties.Next,an MCDM technique is proposed in view of the presented two aggregation operators in the circumstance of SvNNs.In the end,an actual case of the choice issue of slope treatment schemes is provided to indicate the practicability and effectivity of the proposed MCDM technique.展开更多
In this paper,we define the basic concept of triangular neutrosophic cubic hesitant fuzzy number and their properties.We develop a triangular neutrosophic cubic hesitant fuzzy ordered weighted arithmetic averaging (TN...In this paper,we define the basic concept of triangular neutrosophic cubic hesitant fuzzy number and their properties.We develop a triangular neutrosophic cubic hesitant fuzzy ordered weighted arithmetic averaging (TNCIIFOWAA) operator and a triangular neu-trosophic cubic hesitant fuzzy ordered weighted geometric averaging (TNCIIFOWGA) operator to aggregate triangular neutrosophic cubic hesitant fuzzy number (TNCHFN) information and investigate their properties.Furthermore,a multiple attribute decision-making method based on the TNCHFOWAA operator and triangular neutrosophic cubic hesitant fuzzy ordered weighted geometric (TNCHFOWG) operator and the score function of TNCHFN is established under a TNCHFN environment.Finally,an illustrative example of investment alternatives is given to demonstrate the application and effec-tiveness of the developed approach.展开更多
文摘This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.
文摘Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted average and geometric aggregation operators for the modelling of a multiple criteria decision making(MCDM)technique in an inconsistent and indeterminate circumstance.To realize the aims,this paper first proposes the trigonometric t-norm and t-conorm operational laws of SvNNs,which contain the hybrid operations of the tangent and arctangent functions and the cotangent and inverse cotangent functions,and presents the SvNN trigonometric weighted average and geometric operators and their properties.Next,an MCDM technique is proposed in view of the presented two aggregation operators in the circumstance of SvNNs.In the end,an actual case of the choice issue of slope treatment schemes is provided to indicate the practicability and effectivity of the proposed MCDM technique.
文摘In this paper,we define the basic concept of triangular neutrosophic cubic hesitant fuzzy number and their properties.We develop a triangular neutrosophic cubic hesitant fuzzy ordered weighted arithmetic averaging (TNCIIFOWAA) operator and a triangular neu-trosophic cubic hesitant fuzzy ordered weighted geometric averaging (TNCIIFOWGA) operator to aggregate triangular neutrosophic cubic hesitant fuzzy number (TNCHFN) information and investigate their properties.Furthermore,a multiple attribute decision-making method based on the TNCHFOWAA operator and triangular neutrosophic cubic hesitant fuzzy ordered weighted geometric (TNCHFOWG) operator and the score function of TNCHFN is established under a TNCHFN environment.Finally,an illustrative example of investment alternatives is given to demonstrate the application and effec-tiveness of the developed approach.