In this paper, the existence of chaotic behavior in the single-well Duffing Oscillator was examined under parametric excitations using Melnikov method and Lyapunov exponents. The minimum and maximum values were obtain...In this paper, the existence of chaotic behavior in the single-well Duffing Oscillator was examined under parametric excitations using Melnikov method and Lyapunov exponents. The minimum and maximum values were obtained and the dynamical behaviors showed the intersections of manifold which was illustrated using the MATCAD software. This extends some results in the literature. Simulation results indicate that the single-well oscillator is sensitive to sinusoidal signals in high frequency cases and with high damping factor, the amplitude of the oscillator was reduced.展开更多
In areas with a low signal-to-noise ratio of seismic data,the continuity of the seismic reflection waves in the exploration target layer is very poor,which will reduce the imaging accuracy and make it impossible to so...In areas with a low signal-to-noise ratio of seismic data,the continuity of the seismic reflection waves in the exploration target layer is very poor,which will reduce the imaging accuracy and make it impossible to solve certain geological tasks.This article suggests an approach to address the issue of seismic acquisition by optimizing excitation parameters.It involves conducting a detailed investigation of the surface structure,enhancing the observation system,increasing the coverage appropriately,and transitioning from combined-well excitation to single-well excitation.Additionally,the use of technical tools like qualitative evaluation of the observation system and forward modeling are employed to determine the final optimized seismic acquisition plan.The effectiveness of this approach is evident from the seismic profile obtained in an exploration area in Inner Mongolia.展开更多
Acoustic reflection imaging in deep water wells is a new application scope for offshore hydrocarbon exploration.Two-dimensional(2 D)geological structure images can be obtained away from a one-dimensional(1 D)borehole ...Acoustic reflection imaging in deep water wells is a new application scope for offshore hydrocarbon exploration.Two-dimensional(2 D)geological structure images can be obtained away from a one-dimensional(1 D)borehole using single-well acoustic reflection imaging.Based on the directivity of dipole source and four-component dipole data,one can achieve the azimuth detection and the three-dimensional(3 D)structural information around the wellbore can be obtained.We first perform matrix rotation on the field fourcomponent data.Then,a series of processing steps are applied to the rotated dipole data to obtain the reflector image.According to the above dipole shear-wave imaging principle,we used four-component cross-dipole logging data from a deviated well in the South China Sea to image geological structures within 50 m of a deviated well,which can delineate the structural configuration and determine its orientation.The configuration of near-borehole bedding boundaries and fault structures from shear-wave imaging results agrees with those from the Inline and Xline seismic profiles of the study area.In addition,the configuration and orientation of the fault structure images are consistent with regional stress maps and the results of the borehole stress anisotropy analysis.Furthermore,the dip azimuth of the bedding boundary images was determined using borehole wall resistivity data.Results of this study indicate that integrating borehole acoustic reflection with seismic imaging not only fills the gap between the two measurement scales but also accurately delineates geological structures in the borehole vicinity.展开更多
文摘In this paper, the existence of chaotic behavior in the single-well Duffing Oscillator was examined under parametric excitations using Melnikov method and Lyapunov exponents. The minimum and maximum values were obtained and the dynamical behaviors showed the intersections of manifold which was illustrated using the MATCAD software. This extends some results in the literature. Simulation results indicate that the single-well oscillator is sensitive to sinusoidal signals in high frequency cases and with high damping factor, the amplitude of the oscillator was reduced.
文摘In areas with a low signal-to-noise ratio of seismic data,the continuity of the seismic reflection waves in the exploration target layer is very poor,which will reduce the imaging accuracy and make it impossible to solve certain geological tasks.This article suggests an approach to address the issue of seismic acquisition by optimizing excitation parameters.It involves conducting a detailed investigation of the surface structure,enhancing the observation system,increasing the coverage appropriately,and transitioning from combined-well excitation to single-well excitation.Additionally,the use of technical tools like qualitative evaluation of the observation system and forward modeling are employed to determine the final optimized seismic acquisition plan.The effectiveness of this approach is evident from the seismic profile obtained in an exploration area in Inner Mongolia.
基金supported by the National Natural Science Foundation of China(Nos.41804124,41774138,41804121,41604109)China Academy of Sciences Strategic Leading Science and Technology Project(Grant Nos.XDA14020304,XDA14020302)+2 种基金Shandong Provincial Natural Science Foundation,China(No.ZR2019BD039)Shandong Province Postdoctoral Innovation Project(No.201901011)China Postdoctoral Science Foundation(Grant Nos.2019T120615,2018M632745)
文摘Acoustic reflection imaging in deep water wells is a new application scope for offshore hydrocarbon exploration.Two-dimensional(2 D)geological structure images can be obtained away from a one-dimensional(1 D)borehole using single-well acoustic reflection imaging.Based on the directivity of dipole source and four-component dipole data,one can achieve the azimuth detection and the three-dimensional(3 D)structural information around the wellbore can be obtained.We first perform matrix rotation on the field fourcomponent data.Then,a series of processing steps are applied to the rotated dipole data to obtain the reflector image.According to the above dipole shear-wave imaging principle,we used four-component cross-dipole logging data from a deviated well in the South China Sea to image geological structures within 50 m of a deviated well,which can delineate the structural configuration and determine its orientation.The configuration of near-borehole bedding boundaries and fault structures from shear-wave imaging results agrees with those from the Inline and Xline seismic profiles of the study area.In addition,the configuration and orientation of the fault structure images are consistent with regional stress maps and the results of the borehole stress anisotropy analysis.Furthermore,the dip azimuth of the bedding boundary images was determined using borehole wall resistivity data.Results of this study indicate that integrating borehole acoustic reflection with seismic imaging not only fills the gap between the two measurement scales but also accurately delineates geological structures in the borehole vicinity.