期刊文献+
共找到1,800篇文章
< 1 2 90 >
每页显示 20 50 100
A Numerical Method for Singular Boundary-Value Problems
1
作者 Abdalkaleg Hamad M. Tadi Miloje Radenkovic 《Journal of Applied Mathematics and Physics》 2014年第9期882-887,共6页
This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are i... This note is concerned with an iterative method for the solution of singular boundary value problems. It can be considered as a predictor-corrector method. Sufficient conditions for the convergence of the method are introduced. A number of numerical examples are used to study the applicability of the method. 展开更多
关键词 singular boundary-value problem singularly PERTURBED BOUNDARY VALUE problem
下载PDF
Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems
2
作者 Long WANG Lei ZHANG Guowei HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1467-1480,共14页
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp... A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions. 展开更多
关键词 physics-informed neural network(PINN) singular perturbation boundarylayer problem composite asymptotic expansion
下载PDF
Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems
3
作者 Jiaqun Wang Guanxu Pan +1 位作者 Youhe Zhou Xiaojing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期297-318,共22页
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r... In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5. 展开更多
关键词 Wavelet multi-resolution interpolation Galerkin singularly perturbed boundary value problems mesh-free method Shishkin node boundary layer
下载PDF
A SINGULAR DIRICHLET PROBLEM FOR THE MONGE-AMPÈRE TYPE EQUATION
4
作者 Zhijun ZHANG Bo ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1965-1983,共19页
We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smoo... We consider the singular Dirichlet problem for the Monge-Ampère type equation{\rm det}\D^2 u=b(x)g(-u)(1+|\nabla u|^2)^{q/2},\u<0,\x\in\Omega,\u|_{\partial\Omega}=0,whereΩis a strictly convex and bounded smooth domain inℝn,q∈[0,n+1),g∈C∞(0,∞)is positive and strictly decreasing in(0,∞)with\lim\limits_{s\rightarrow 0^+}g(s)=\infty,and b∈C∞(Ω)is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions. 展开更多
关键词 Monge-Ampère equation a singular boundary value problem the unique convex solution global asymptotic behavior
下载PDF
A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems 被引量:1
5
作者 Jufeng Wang Yong Wu +1 位作者 Ying Xu Fengxin Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期341-356,共16页
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose... By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability. 展开更多
关键词 Dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method interpolating variational multiscale element-free Galerkin(VMIEFG)method dimension splitting method singularly perturbed convection-diffusion problems
下载PDF
ASYMPTOTIC BEHAVIOUR OF EIGENVALUES FOR THE DISCONTINUOUS BOUNDARY-VALUE PROBLEM WITH FUNCTIONAL-TRANSMISSION CONDITIONS 被引量:10
6
作者 O.Sh.Mukhtarov Department of Mathematics, Science and Arts Faculty, Gaziosmanpasa University, Tokat, TurkeyMustafa Kandemir Department of Mathematics, Faculty of A mas y a Education, Ondokuz Mayis University, Amasya, Turkey 《Acta Mathematica Scientia》 SCIE CSCD 2002年第3期335-345,共11页
In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in... In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found. 展开更多
关键词 Asymptotic behaviour of eigenvalues boundary-value problems functional-conditions discontinuous coefficients
下载PDF
Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals 被引量:1
7
作者 郭丽辉 范天佑 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第8期1061-1070,共10页
Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In ... Weak solution (or generalized solution) for the boundary-value problems of partial differential equations of elasticity of 3D (three-dimensional) quasicrystals is given, in which the matrix expression is used. In terms of Korn inequality and theory of function space, we prove the uniqueness of the weak solution. This gives an extension of existence theorem of solution for classical elasticity to that of quasicrystals, and develops the weak solution theory of elasticity of 2D quasicrystals given by the second author of the paper and his students. 展开更多
关键词 QUASICRYSTAL ELASTICITY boundary-value problem weak solution SOLVABILITY
下载PDF
Study on the Existence of Sign-Changing Solutions of Case Theory Based a Class of Differential Equations Boundary-Value Problems 被引量:1
8
作者 Hongwei Ji 《Advances in Pure Mathematics》 2017年第12期686-691,共6页
By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive soluti... By using the fixed point theorem under the case structure, we study the existence of sign-changing solutions of A class of second-order differential equations three-point boundary-value problems, and a positive solution and a negative solution are obtained respectively, so as to popularize and improve some results that have been known. 展开更多
关键词 Case Theory boundary-value problemS Fixed POINT THEOREM Sign-Changing SOLUTIONS
下载PDF
Logarithmic Sine and Cosine Transforms and Their Applications to Boundary-Value Problems Connected with Sectionally-Harmonic Functions
9
作者 Mithat Idemen 《Applied Mathematics》 2013年第2期378-386,共9页
Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + ... Let stand for the polar coordinates in R2, ?be a given constant while satisfies the Laplace equation in the wedge-shaped domain or . Here αj(j = 1,2,...,n + 1) denote certain angles such that αj αj(j = 1,2,...,n + 1). It is known that if r = a satisfies homogeneous boundary conditions on all boundary lines ?in addition to non-homogeneous ones on the circular boundary , then an explicit expression of in terms of eigen-functions can be found through the classical method of separation of variables. But when the boundary?condition given on the circular boundary r = a is homogeneous, it is not possible to define a discrete set of eigen-functions. In this paper one shows that if the homogeneous condition in question is of the Dirichlet (or Neumann) type, then the logarithmic sine transform (or logarithmic cosine transform) defined by (or ) may be effective in solving the problem. The inverses of these transformations are expressed through the same kernels on or . Some properties of these transforms are also given in four theorems. An illustrative example, connected with the heat transfer in a two-part wedge domain, shows their effectiveness in getting exact solution. In the example in question the lateral boundaries are assumed to be non-conducting, which are expressed through Neumann type boundary conditions. The application of the method gives also the necessary condition for the solvability of the problem (the already known existence condition!). This kind of problems arise in various domain of applications such as electrostatics, magneto-statics, hydrostatics, heat transfer, mass transfer, acoustics, elasticity, etc. 展开更多
关键词 Integral Transforms HARMONIC Functions WEDGE problemS boundary-value problemS Logarithmic SINE TRANSFORM Logarithmic COSINE TRANSFORM
下载PDF
The Singularly Perturbed Boundary Value Problems for Elliptic Equation with Turning Point 被引量:1
10
作者 陈松林 莫嘉琪 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第3期12-16,共5页
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ... The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied. 展开更多
关键词 singular perturbation boundary value problem elliptic equation
下载PDF
THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE SINGULARLY PERTURBED INITIAL BOUNDARY VALUE PROBLEMS OF THE REACTION DIFFUSION EQUATIONS IN A PART OF DOMAIN
11
作者 刘其林 莫嘉琪 《应用数学和力学》 EI CSCD 北大核心 2001年第10期1075-1080,共6页
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i... A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied. 展开更多
关键词 奇摄动 反应扩散方程 初始边值问题 算子理论 渐近性态
下载PDF
AN EFFICIENT FINITE DIFFERENCE METHOD FOR STOCHASTIC LINEAR SECOND-ORDER BOUNDARY-VALUE PROBLEMS DRIVEN BY ADDITIVE WHITE NOISES
12
作者 Mahboub Baccouch 《Journal of Computational Mathematics》 SCIE CSCD 2024年第2期432-453,共22页
In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approxim... In this paper,we develop and analyze a finite difference method for linear second-order stochastic boundary-value problems(SBVPs)driven by additive white noises.First we regularize the noise by the Wong-Zakai approximation and introduce a sequence of linear second-order SBVPs.We prove that the solution of the SBVP with regularized noise converges to the solution of the original SBVP with convergence order O(h)in the meansquare sense.To obtain a numerical solution,we apply the finite difference method to the stochastic BVP whose noise is piecewise constant approximation of the original noise.The approximate SBVP with regularized noise is shown to have better regularity than the original problem,which facilitates the convergence proof for the proposed scheme.Convergence analysis is presented based on the standard finite difference method for deterministic problems.More specifically,we prove that the finite difference solution converges at O(h)in the mean-square sense,when the second-order accurate three-point formulas to approximate the first and second derivatives are used.Finally,we present several numerical examples to validate the efficiency and accuracy of the proposed scheme. 展开更多
关键词 boundary-value problems Finite-difference method Additive white noise Wiener process Mean-square convergence Wong-Zakai approximation
原文传递
MULTIPLE POSITIVE SOLUTIONS OF SINGULAR THIRD-ORDER PERIODIC BOUNDARY VALUE PROBLEM 被引量:21
13
作者 孙经先 刘衍胜 《Acta Mathematica Scientia》 SCIE CSCD 2005年第1期81-88,共8页
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2... This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions. 展开更多
关键词 singular boundary value problem third-order differential system positive solution
下载PDF
MULTIPLE POSITIVE SOLUTIONS TO SINGULAR BOUNDARY VALUE PROBLEMS FOR SUPERLINEAR SECOND ORDER ODES 被引量:11
14
作者 蒋达清 《Acta Mathematica Scientia》 SCIE CSCD 2002年第2期199-206,共8页
This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
关键词 singular boundary value problem existence SUPERLINEAR the fixed point theorem
下载PDF
RADIAL CONVEX SOLUTIONS OF A SINGULAR DIRICHLET PROBLEM WITH THE MEAN CURVATURE OPERATOR IN MINKOWSKI SPACE 被引量:3
15
作者 Zaitao LIANG 杨艳娟 《Acta Mathematica Scientia》 SCIE CSCD 2019年第2期395-402,共8页
In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theo... In this paper, we study the existence of nontrivial radial convex solutions of a singular Dirichlet problem involving the mean curvature operator in Minkowski space. The proof is based on a well-known fixed point theorem in cones. We deal with more general nonlinear term than those in the literature. 展开更多
关键词 RADIAL CONVEX SOLUTIONS singular Dirichlet problem mean CURVATURE OPERATOR fixed point theorem in cones
下载PDF
The Shock Solution for a Class of Quasilinear Singularly Perturbed Boundary Value Problems 被引量:5
16
作者 CHEN Ting YAO Jing-sun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期317-322,共6页
The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching... The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching principle. 展开更多
关键词 QUASILINEAR boundary value problem singular perturbation
下载PDF
A Class of Strongly Nonlinear Singular Perturbed Boundary Value Problems 被引量:15
17
作者 TANG Rong-rong(Department of Mathematics, Huzhou Teacher’ s College, Huzhou 313000, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第2期117-120,共4页
In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solu... In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well. 展开更多
关键词 nonlinear equation singular perturbation boundary value problem differential inequality
下载PDF
A CLASS OF SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEM 被引量:3
18
作者 MoJiaqi LinWantao 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第2期159-164,共6页
The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of... The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities. 展开更多
关键词 NONLINEAR singular perturbation boundary value problem.
下载PDF
THE SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER SEMILINEAR ELLIPTIC EQUATIONS 被引量:3
19
作者 莫嘉琪 许玉兴 《Acta Mathematica Scientia》 SCIE CSCD 1997年第1期44-50,共7页
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio... In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained. 展开更多
关键词 differential inequality singular perturbation asymptotic expansion elliptic partial differential equation boundary value problem
下载PDF
TWO POSITIVE SOLUTIONS TO THREE-POINT SINGULAR BOUNDARY VALUE PROBLEMS 被引量:3
20
作者 李宇华 梁占平 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期29-38,共10页
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ... In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f. 展开更多
关键词 Three-point singular boundary value problem positive solutions fixed point index
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部