In this study,we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control.For the linear system based on the Mittag-Leffler matrix func...In this study,we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control.For the linear system based on the Mittag-Leffler matrix function,we define a controllability Gramian matrix,which is useful in judging whether the system is controllable or not.Furthermore,in two special cases,we present serval equivalent controllable conditions which are easy to verify.For the nonlinear system,under the controllability of its corresponding linear system,we obtain a sufficient condition on the nonlinear term to ensure that the system is controllable.Finally,two examples are given to illustrate the theory.展开更多
The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is propo...The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.展开更多
The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标...这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标准界限限制。所有获得的结果是延期依赖者并且由不包含系统矩阵的分解的严格的 LMI 提出。数字例子证明建议方法不比存在的保守。展开更多
The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and n...The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.展开更多
The problem of robust and H∞ reliable control for a class of uncertain singular systems with state time-delay is concerned. The problem we address is to design a state feedback controller such that the resulting clos...The problem of robust and H∞ reliable control for a class of uncertain singular systems with state time-delay is concerned. The problem we address is to design a state feedback controller such that the resulting close-loop systems is regular, impulse free and stable for all admissible uncertainties as well as actuator faults among a prespecified subset. A linear matrix inequality (LMI) design approach is proposed to solve the problem addressed with Hoo norm bound constraint on disturbance attenuation. Finally, a numerical example is provided to demonstrate the application of the proposed method.展开更多
Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
This paper deals with the stochastic stability of networked control systems with the presence of network- induced delay and transmitted data dropout. Based on the Lyapunov approach, sufficient conditions for the mean-...This paper deals with the stochastic stability of networked control systems with the presence of network- induced delay and transmitted data dropout. Based on the Lyapunov approach, sufficient conditions for the mean-square stability of the networked control system are derived subject that the sequence of transmission interval is driven by an identically independently distributed sequence and by a finite state Markov chain, respectively. Stabilization controllers are constructed in terms of linear matrix inequalities correspondingly. An example is provided to illustrate our results.展开更多
For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequali...For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequalities solvable by an LMI-based iterative algorithm. Compared with the conventional state-feedback controller, the proposed controller can achieve better robust control performance since the delayed state is utilized as additional feedback information and the parameters of the proposed controllers are changed synchronously with the dynamical characteristic of the system. This design method was also extended to the case where only delayed state is available for the controller. The example of balancing an inverted pendulum on a cart demonstrates the effectiveness and applicability of the proposed design methods.展开更多
This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independe...This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.展开更多
Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is...Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.展开更多
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional ...The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.展开更多
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estim...In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.展开更多
The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singu...The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.展开更多
The problem on stabilization for the system with distributed delays is researched. The distributed time-delay under consideration is assumed to be a constant time-delay, but not known exactly. A design method is propo...The problem on stabilization for the system with distributed delays is researched. The distributed time-delay under consideration is assumed to be a constant time-delay, but not known exactly. A design method is proposed for a memory proportional and integral (PI) feedback controller with adaptation to distributed time-delay. The feedback controller with memory simultaneously contains the current state and the past distributed information of the addressed systems. The design for adaptation law to distributed delay is very concise. The controller can be derived by solving a set of linear matrix inequalities (LMIs). Two numerical examples are given to illustrate the effectiveness of the design method.展开更多
The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced ...The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.展开更多
In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with ...In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.展开更多
This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzz...This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear singular system. The purpose of the robust stochastic stabilization problem is to design a state feedback fuzzy controller such that the closed-loop fuzzy system is robustly stochastically stable for all admissible uncertainties. In the robust H-infinity control problem, in addition to the stochastic stability requirement, a prescribed performance is required to be achieved. Linear matrix inequality (LMI) sufficient conditions are developed to solve these problems, respectively. The expressions of desired state feedback fuzzy controllers are given. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61803386)the Natural Science Foundation of Shanghai,China(No.19ZR1400500)。
文摘In this study,we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control.For the linear system based on the Mittag-Leffler matrix function,we define a controllability Gramian matrix,which is useful in judging whether the system is controllable or not.Furthermore,in two special cases,we present serval equivalent controllable conditions which are easy to verify.For the nonlinear system,under the controllability of its corresponding linear system,we obtain a sufficient condition on the nonlinear term to ensure that the system is controllable.Finally,two examples are given to illustrate the theory.
基金supported by the National Natural Science Foundation of China(60774016).
文摘The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
文摘这份报纸讨论延期依赖者的问题为有州的延期的不明确的单个系统的柔韧的 H 控制。把途径基于线性矩阵不平等(LMI ) ,我们设计一个州的反馈控制器,它保证为所有可被考虑的无常,结果的靠近环的系统是常规的,推动与 H 免费、稳定的标准界限限制。所有获得的结果是延期依赖者并且由不包含系统矩阵的分解的严格的 LMI 提出。数字例子证明建议方法不比存在的保守。
基金supported by the National Natural Science Foundation of China (60564001)the Program for New Century Excellent Talentsin University (NCET-06-0756)
文摘The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.
文摘The problem of robust and H∞ reliable control for a class of uncertain singular systems with state time-delay is concerned. The problem we address is to design a state feedback controller such that the resulting close-loop systems is regular, impulse free and stable for all admissible uncertainties as well as actuator faults among a prespecified subset. A linear matrix inequality (LMI) design approach is proposed to solve the problem addressed with Hoo norm bound constraint on disturbance attenuation. Finally, a numerical example is provided to demonstrate the application of the proposed method.
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.
基金National Natural Science Foundation of China (No.60874021, 60674046)Natural Science Foundation from JiangsuProvince (No.BK2007061)+1 种基金Natural Science Foundation from Jiangsu Provincial Department for Education (No.06KJB120088)Research Fundfor Doctoral Program of Nantong University (No.07B14).
文摘This paper deals with the stochastic stability of networked control systems with the presence of network- induced delay and transmitted data dropout. Based on the Lyapunov approach, sufficient conditions for the mean-square stability of the networked control system are derived subject that the sequence of transmission interval is driven by an identically independently distributed sequence and by a finite state Markov chain, respectively. Stabilization controllers are constructed in terms of linear matrix inequalities correspondingly. An example is provided to illustrate our results.
文摘For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequalities solvable by an LMI-based iterative algorithm. Compared with the conventional state-feedback controller, the proposed controller can achieve better robust control performance since the delayed state is utilized as additional feedback information and the parameters of the proposed controllers are changed synchronously with the dynamical characteristic of the system. This design method was also extended to the case where only delayed state is available for the controller. The example of balancing an inverted pendulum on a cart demonstrates the effectiveness and applicability of the proposed design methods.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z182), National Natu- ral Science Foundation of China (60736021), and National Creative Research Groups Science Foundation of China (60721062)
基金This work was supported by the National Natural Science Foundation of China(No. 60275013).
文摘This paper deals with the problem of delay-dependent stability and stabilization for networked control systems(NCSs)with multiple time-delays. In view of multi-input and multi-output(MIMO) NCSs with many independent sensors and actuators, a continuous time model with distributed time-delays is proposed. Utilizing the Lyapunov stability theory combined with linear matrix inequalities(LMIs) techniques, some new delay-dependent stability criteria for NCSs in terms of generalized Lyapunov matrix equation and LMIs are derived. Stabilizing controller via state feedback is formulated by solving a set of LMIs. Compared with the reported methods, the proposed methods give a less conservative delay bound and more general results. Numerical example and simulation show that the methods are less conservative and more effective.
基金the National Natural Science Foundation of China (60325311).
文摘Based on the delay-independent rule, the problem of optimal guaranteed cost control for a class of Takagi-Sugeno (T-S) fuzzy descriptor systems with time-varying delay is studied. A linear quadratic cost function is considered as the performance index of the closed-loop system. Sufficient conditions for the existence of guaranteed cost controllers via state feedback are given in terms of linear matrix inequalities (LMIs), and the design of an optimal guaranteed cost controller can be reduced to a convex optimization problem. It is shown that the designed controller not only guarantees the asymptotic stability of the closed-loop fuzzy descriptor delay system, but also provides an optimized upper bound of the guaranteed cost. At last, a numerical example is given to illustrate the effectiveness of the proposed method and the perfect performance of the optimal guaranteed cost controller.
基金This work was partially supported by the National Natural Science Foundation of China(No.60504008).
文摘The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system; next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
基金supported by National Natural Science Foundationof China (No. 60850004)
文摘In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
基金This work was supported by the National Creative Research Groups Science Foundation of China (No. 60421002) and the New Century 151 Talent Projectof Zhejiang Province.
文摘The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60804017 60835001+3 种基金 60904020 60974120)the Foundation of Doctor (20070286039 20070286001)
文摘The problem on stabilization for the system with distributed delays is researched. The distributed time-delay under consideration is assumed to be a constant time-delay, but not known exactly. A design method is proposed for a memory proportional and integral (PI) feedback controller with adaptation to distributed time-delay. The feedback controller with memory simultaneously contains the current state and the past distributed information of the addressed systems. The design for adaptation law to distributed delay is very concise. The controller can be derived by solving a set of linear matrix inequalities (LMIs). Two numerical examples are given to illustrate the effectiveness of the design method.
基金supported by the NSFC-Guangdong Joint Foundation Key Project(U0735003)the Overseas Cooperation Foundation(60828006)+1 种基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities(2009ZM0076)the Natural Science Foundation of Guangdong Province(06105413)
文摘The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(No.60275013).
文摘In this paper, delay-dependent robust stability for a class of uncertain networked control systems (NCSs) with multiple state time-delays is investigated. Modeling of multi-input and multi-output (MIMO) NCSs with networkinduced delays and uncertainties through new methods are proposed. Some new stability criteria in terms of LMIs are derived by using Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques. We analyze the delay-dependent asymptotic stability and obtain maximum allowable delay bound (MADB) for the NCSs with the proposed methods. Compared with the reported results, the proposed results obtain a much less conservative MADB which are more general. Numerical example and simulation is used to illustrate the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China (No.60574088, 60274014)the Research Plan Program of Scienceand Technology Ministry of Wuhan (No. 200950199019-07)
文摘This paper deals with the problems of robust stochastic stabilization and H-infinity control for Markovian jump nonlinear singular systems with Wiener process via a fuzzy-control approach. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a nonlinear singular system. The purpose of the robust stochastic stabilization problem is to design a state feedback fuzzy controller such that the closed-loop fuzzy system is robustly stochastically stable for all admissible uncertainties. In the robust H-infinity control problem, in addition to the stochastic stability requirement, a prescribed performance is required to be achieved. Linear matrix inequality (LMI) sufficient conditions are developed to solve these problems, respectively. The expressions of desired state feedback fuzzy controllers are given. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.