期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Periodic Solutions of Prescribed Energy for a Class of Symmetric Singular Dynamical Systems
1
《Acta Mathematica Sinica,English Series》 SCIE CSCD 1994年第4期410-414,共5页
We consider the following Hamiltonian system: q″(t)+V′(q(t))=0 q ∈C^2(R,R^n\{0}) (HS) where V ∈C^2(R^n\{0},R)is an even function.By looking for closed geodesics,we prove that (HS)has a nonconstant periodic solutio... We consider the following Hamiltonian system: q″(t)+V′(q(t))=0 q ∈C^2(R,R^n\{0}) (HS) where V ∈C^2(R^n\{0},R)is an even function.By looking for closed geodesics,we prove that (HS)has a nonconstant periodic solution of prescribed energy under suitable assumptions.Our main assumption is related with the strong force condition of Gordon. 展开更多
关键词 Periodic Solutions of Prescribed Energy for a Class of Symmetric singular dynamical systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部