Let μ be a non-negative Radon measure on R^d which satisfies some growth conditions. The boundedness of multilinear Calderon-Zygmund singular integral operator T and its commutators with RBMO functions on Morrey-Herz...Let μ be a non-negative Radon measure on R^d which satisfies some growth conditions. The boundedness of multilinear Calderon-Zygmund singular integral operator T and its commutators with RBMO functions on Morrey-Herz spaces are obtained if T is bounded from L^1(μ)χ…χ L^1(μ) to L1/m,∞(μ).展开更多
Let μ be a non-negative Radon measure on Rd which only satisfies the following growth condition that there exists a positive constant C such that μ(B(x,r)) ≤ Crn?for all x∈ Rd, r > 0 and some fixed n ∈ (0,d]. ...Let μ be a non-negative Radon measure on Rd which only satisfies the following growth condition that there exists a positive constant C such that μ(B(x,r)) ≤ Crn?for all x∈ Rd, r > 0 and some fixed n ∈ (0,d]. This paper is interested in the properties of the iterated commutators of multilinear singular integral operators on Morrey spaces?.Precisely speaking, we show that the iterated commutators generated by multilinear singular integrals operators are bounded from to where (Regular Bounded Mean Oscillation space) and 1 qj ≤ pj ∞ with 1/p = 1/p1 + ... + 1/pm and 1/q = 1/q1+ ... + 1/qm.展开更多
In this paper, the authors establish the boundedness of multilinear commutators generated by a Marcinkiewicz integral operator and a RBMO(μ) function on homogeneous Morrey-Herz spaces with non doubling measures.
The boundedness in Lebesgue spaces for commutators generated by multilinear singular integrals and RMBO(μ) functions of Tolsa with non-doubling measures is obtained, provided that ∥μ∥ = ∞ and multilinear singular...The boundedness in Lebesgue spaces for commutators generated by multilinear singular integrals and RMBO(μ) functions of Tolsa with non-doubling measures is obtained, provided that ∥μ∥ = ∞ and multilinear singular integrals are bounded from L 1(μ) × L 1(μ) to L 1/2,∞(μ).展开更多
Letμbe a nonnegative Radon measure on R^d which only satisfiesμ(B(x,r))≤C_0r^n for all x∈R^d,r>0,and some fixed constants C_0>0 and n∈(0,d].In this paper,some weighted weak type estimates with A_(p,(log L)~...Letμbe a nonnegative Radon measure on R^d which only satisfiesμ(B(x,r))≤C_0r^n for all x∈R^d,r>0,and some fixed constants C_0>0 and n∈(0,d].In this paper,some weighted weak type estimates with A_(p,(log L)~σ)~ρ(μ) weights are established for the commutators generated by Calder■n-Zygmund singular integral operators with RBMO(μ) functions.展开更多
基金Supported by the National Natural Science Foundation of China(10971228)Supported by the Science and Technology Innovation Plan for Graduate Students of Jiangsu Educational Department(CXZZll-0633)+1 种基金Supported by the Science and Technology Innovation Plan for Graduate Students of Nangtong University (YKC111051)Supported by the NSF of Nantong University(llZY002)
文摘Let μ be a non-negative Radon measure on R^d which satisfies some growth conditions. The boundedness of multilinear Calderon-Zygmund singular integral operator T and its commutators with RBMO functions on Morrey-Herz spaces are obtained if T is bounded from L^1(μ)χ…χ L^1(μ) to L1/m,∞(μ).
文摘Let μ be a non-negative Radon measure on Rd which only satisfies the following growth condition that there exists a positive constant C such that μ(B(x,r)) ≤ Crn?for all x∈ Rd, r > 0 and some fixed n ∈ (0,d]. This paper is interested in the properties of the iterated commutators of multilinear singular integral operators on Morrey spaces?.Precisely speaking, we show that the iterated commutators generated by multilinear singular integrals operators are bounded from to where (Regular Bounded Mean Oscillation space) and 1 qj ≤ pj ∞ with 1/p = 1/p1 + ... + 1/pm and 1/q = 1/q1+ ... + 1/qm.
基金Supported in part by the NSF(A200913)of Heilongjiang Provincethe Scientific Tech-nical Research Project(12531720)of the Education Department of Heilongjiang Province+1 种基金Pre-Research Project(SY201224)of Provincial Key Innovationthe NSF(11161042)of China
文摘In this paper, the authors establish the boundedness of multilinear commutators generated by a Marcinkiewicz integral operator and a RBMO(μ) function on homogeneous Morrey-Herz spaces with non doubling measures.
基金This work was partially supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No.06B059)the Natural Science Foundation of Hunan Province of China(Grant No.06JJ5012)the National Natural Science Foundation of China(Grant Nos.60474070 and 10671062)
文摘The boundedness in Lebesgue spaces for commutators generated by multilinear singular integrals and RMBO(μ) functions of Tolsa with non-doubling measures is obtained, provided that ∥μ∥ = ∞ and multilinear singular integrals are bounded from L 1(μ) × L 1(μ) to L 1/2,∞(μ).
基金This work was partly supported by the National Natural Science Foundation of China (Grant No.10671210)the National Science Foundation for Distinguished Young Scholars (Grant No.10425106)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No.04-0142)
文摘Letμbe a nonnegative Radon measure on R^d which only satisfiesμ(B(x,r))≤C_0r^n for all x∈R^d,r>0,and some fixed constants C_0>0 and n∈(0,d].In this paper,some weighted weak type estimates with A_(p,(log L)~σ)~ρ(μ) weights are established for the commutators generated by Calder■n-Zygmund singular integral operators with RBMO(μ) functions.