期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
High order finite volume methods for singular perturbation problems 被引量:2
1
作者 CHEN ZhongYing HE ChongNan WU Bin 《Science China Mathematics》 SCIE 2008年第8期1391-1400,共10页
In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal co... In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal convergence order.Numerical experiments are presented to verify our theoretical estimates. 展开更多
关键词 finite volume methods optimal meshes singular perturbation problems 65L10 65L12 65L60
原文传递
Finite-Difference Methods for a Class of Strongly Nonlinear Singular Perturbation Problems
2
作者 Relja Vulanovi 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第2期235-244,共10页
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the... The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L^1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes. 展开更多
关键词 Boundary-value problem singular perturbation finite differences Bakhvalov and piecewise equidistant meshes L^1 stability
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
3
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
Finite volume element method for analysis of unsteady reaction-diffusion problems 被引量:1
4
作者 Sutthisak Phongthanapanich Pramote Dechaumphai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第4期481-489,共9页
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element m... A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers. 展开更多
关键词 finite volume element method Explicitmethod Unsteady problem singularly perturbed equation REACTION-DIFFUSION
下载PDF
Uniform Convergence Analysis for Singularly Perturbed Elliptic Problems with Parabolic Layers 被引量:2
5
作者 Jichun Li Yitung Chen 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第2期138-149,共12页
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti... In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis. 展开更多
关键词 finite element methods singularly perturbed problems uniformly convergent
下载PDF
Finite Element Analysis for Singularly Perturbed Advection-Diffusion Robin Boundary Values Problem
6
作者 Songlin Chen Weigen Hou Xiaohui Jiang 《Advances in Pure Mathematics》 2013年第7期643-646,共4页
A singularly perturbed advection-diffusion two-point Robin boundary value problem whose solution has a single boundary layer is considered. Based on the piecewise linear polynomial approximation, the finite element me... A singularly perturbed advection-diffusion two-point Robin boundary value problem whose solution has a single boundary layer is considered. Based on the piecewise linear polynomial approximation, the finite element method is applied to the problem. Estimation of the error between solution and the finite element approximation is given in energy norm on shishkin-type mesh. 展开更多
关键词 singular perturbation ADVECTION-DIFFUSION Robin BVP finite Element method Shishkin MESH Error Estimation
下载PDF
A Numerical Method for Nonlinear Singularly Perturbed Multi-Point Boundary Value Problem
7
作者 Musa Çakır Derya Arslan 《Journal of Applied Mathematics and Physics》 2016年第6期1143-1156,共14页
We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rul... We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rules, exponential basis functions and remainder terms in integral form. We show that this method is the first order convergent in the discrete maximum norm for original problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3. 展开更多
关键词 singular perturbation Fitted finite Difference method Shishkin Mesh Nonlocal Boundary Condition Uniform Convergence
下载PDF
Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem
8
作者 SHI Jiamin LU Zhongshu +2 位作者 ZHANG Luyi LU Sunjia CHENG Yao 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第5期411-420,共10页
This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transfo... This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations.We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework.The convergence rate is valid independent of the small parameter.Furthermore,we establish a sharper L^(2)-error estimate if the true solution has a special regular component.Numerical experiments are also given. 展开更多
关键词 layer-adapted meshes singularly perturbed problem uniform convergence discontinuous Galerkin method
原文传递
VARIABLE MESH FINITE DIFFERENCE METHOD FOR SELF-ADJOINT SINGULARLY PERTURBED TWO-POINT BOUNDARY VALUE PROBLEMS
9
作者 Mohan K.Kadalbajoo Devendra Kumar 《Journal of Computational Mathematics》 SCIE CSCD 2010年第5期711-724,共14页
A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is co... A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to its normal form and the reduced problem is solved by finite difference method taking variable mesh. To support the efficiency of the method, several numerical examples have been considered. 展开更多
关键词 singularly perturbed boundary value problems finite difference method Boundary layer Parameter uniform-convergence Variable mesh.
原文传递
THE NUMERICAL SOLUTION OF A SINGULARLY PERTURBED PROBLEM FOR SEMILINEAR PARABOLIC DIFFERENTIAL EQUATION
10
作者 苏煜城 沈全 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第11期1047-1056,共10页
The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the sp... The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given. 展开更多
关键词 semilinear parabolic differential equation singularly perturbed problem finite difference method uniform convergence
下载PDF
A Finite Element Method for Singularly Perturbed Reaction-diffusion Problems
11
作者 Huo-yuanDuan Da-LiZhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第1期25-30,共6页
Abstract A finite element method is proposed for the singularly perturbed reaction-diffusion problem. An optimal error bound is derived, independent of the perturbation parameter.
关键词 Keywords finite element method singularly perturbed reaction-diffusion problems
原文传递
Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem 被引量:2
12
作者 Yunhui Yin Peng Zhu Bin Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2017年第1期44-64,共21页
In this paper,a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection–diffusion problem is analyzed.The method is shown to be convergent uniformly in the p... In this paper,a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection–diffusion problem is analyzed.The method is shown to be convergent uniformly in the perturbation parameterǫprovided only that ∈≤N^(−1).An O(N^(−2)(lnN)^(1/2))convergent rate in a discrete streamline-diffusion norm is established under certain regularity assump-tions.Finally,through numerical experiments,we verified the theoretical results. 展开更多
关键词 singularly perturbed problem Streamline-Diffusion finite element method Bakhvalov-Shishkin mesh error estimate
原文传递
奇异摄动反应扩散方程数值模拟的粒子群优化算法 被引量:6
13
作者 刘利斌 欧阳艾嘉 《计算机应用》 CSCD 北大核心 2014年第4期1080-1082,1093,共4页
针对Shishkin网格方法在数值求解奇异摄动反应扩散方程时,网格过度点参数的选取具有不确定性的缺陷,提出了一种用粒子群优化(PSO)算法估计Shishkin网格参数的方法。首先基于有限差分方法,构造了以误差范数最小为目标的无约束优化问题,并... 针对Shishkin网格方法在数值求解奇异摄动反应扩散方程时,网格过度点参数的选取具有不确定性的缺陷,提出了一种用粒子群优化(PSO)算法估计Shishkin网格参数的方法。首先基于有限差分方法,构造了以误差范数最小为目标的无约束优化问题,并用PSO算法进行了求解。该方法克服了人为选择参数的缺陷。实验结果表明:与单纯形算法相比,PSO算法在优化Shishkin网格参数时能够收敛到全局最优解;而且在最优网格参数下,奇异摄动反应扩散方程的数值结果在边界层的精度也得到了明显提高,进一步说明了所提方法的有效性和可行性。 展开更多
关键词 奇异摄动反应扩散方程 SHISHKIN网格 有限差分方法 粒子群优化算法 边界层
下载PDF
奇异摄动对流扩散问题的区域分解算法 被引量:1
14
作者 王传丽 殷政伟 武从海 《河南科技大学学报(自然科学版)》 CAS 2008年第3期40-43,59,共5页
将奇异摄动对流扩散问题的区域分解算法推广到二维非定常的情形,并将Shishkin混合有限差分格式与区域分解方法结合,得到了此类方程更高精度的并行算法。
关键词 区域分解算法 对流扩散问题 SHISHKIN网格 奇异摄动
下载PDF
双参数奇异摄动问题的L^∞一致收敛差分格式 被引量:3
15
作者 庄平辉 孙见荆 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1998年第5期634-639,共6页
对带有两个小参数的奇异摄动问题,给出一种差分格式.并证明其在L∞范数意义下的一致收敛性.最后给出数值例子.
关键词 奇异摄动 一致收敛性 有限元法 差分格式
下载PDF
奇异摄动问题的LDG/FEM耦合解法 被引量:1
16
作者 祝鹏 谢胜兰 《嘉兴学院学报》 2011年第6期5-11,共7页
根据奇异摄动问题解的特点,提出了一种求解奇异摄动问题的新方法——LDG/FEM耦合方法.该方法将计算区域分为两个不重叠的子区域,在解变化较大的区域采用具有较好稳定性的间断有限元方法,在解变化平缓的区域采用自由度较少的连续有限元方... 根据奇异摄动问题解的特点,提出了一种求解奇异摄动问题的新方法——LDG/FEM耦合方法.该方法将计算区域分为两个不重叠的子区域,在解变化较大的区域采用具有较好稳定性的间断有限元方法,在解变化平缓的区域采用自由度较少的连续有限元方法.证明了该耦合方法导出的离散系统的解的存在性和唯一性,并证明了该方法的稳定性.数值结果表明:LDG/FEM耦合方法在Shishkin网格上是一致收敛的. 展开更多
关键词 奇异摄动问题 间断有限元 连续有限元 SHISHKIN网格 LDG/FEM耦合方法
下载PDF
二阶奇异摄动问题的高阶有限体积法 被引量:1
17
作者 何崇南 《广西科学》 CAS 2009年第4期392-396,399,共6页
建立一种奇异摄动两点边值问题数值求解的高阶Hermite型有限体积法,给出该体积法的1个简单的计算格式,在较弱的条件下得到最佳阶的一致收敛性估计,并用数值实验验证该有限体积法的合理性和方法的有效性.结果表明,有限体积法和Galerkin... 建立一种奇异摄动两点边值问题数值求解的高阶Hermite型有限体积法,给出该体积法的1个简单的计算格式,在较弱的条件下得到最佳阶的一致收敛性估计,并用数值实验验证该有限体积法的合理性和方法的有效性.结果表明,有限体积法和Galerkin方法几乎具有相同精度,最优收敛阶的实际值与理论值很接近. 展开更多
关键词 奇异摄动问题 有限体积法 最优网格
下载PDF
奇异摄动问题最优阶一致收敛的间断有限元分析
18
作者 杨宇博 祝鹏 尹云辉 《数学物理学报(A辑)》 CSCD 北大核心 2014年第3期716-726,共11页
采用非对称内罚间断有限元方法(以下简称NIPG方法)求解一维对流扩散型奇异摄动问题.理论上证明了采用拉格朗日线性元的NIPG方法在Bakhvalov-Shishkin网格上具有最优阶的一致收敛性,即在能量范数度量下其误差估计为O(N^(-1)),其中N为网... 采用非对称内罚间断有限元方法(以下简称NIPG方法)求解一维对流扩散型奇异摄动问题.理论上证明了采用拉格朗日线性元的NIPG方法在Bakhvalov-Shishkin网格上具有最优阶的一致收敛性,即在能量范数度量下其误差估计为O(N^(-1)),其中N为网格剖分中单元个数.数值算例验证了理论分析的正确性. 展开更多
关键词 奇异摄动问题 间断Galerkin有限元 Bakhvalov-Shishkin网格 一致收敛性
下载PDF
奇异摄动问题在Bakhvalov—Shishkin网格上的Galerkin有限元逼近 被引量:1
19
作者 杨宇博 《嘉兴学院学报》 2012年第6期9-12,共4页
采用线性Galekin有限元在Bakhvalov—Shishkin网格上求解一维对流扩散型的奇异摄动问题.证明了该方法在ε≤N-1的前提下,关于扰动参数ε是一致收敛的,其ε-加权能量范数下的误差阶为N-1,并通过数值算例,验证了理论分析.
关键词 奇异摄动问题 线性Galerkin有限元 Bakhvalov-Shishkin网格
下载PDF
一维摄动边界层在优化网格的一致收敛多尺度有限元计算
20
作者 孙美玲 王晓莹 江山 《湘潭大学学报(自然科学版)》 CAS 2022年第2期63-71,共9页
研究含极小摄动参数的一维对流扩散方程,应用多尺度有限元的高效计算格式求其数值解.构造的多尺度基函数能细致模拟边界层,迭代的自适应优化网格能精确逼近过渡点,通过Matlab模块化编程,从而在宏观尺度节省计算消耗,得到了范数度量下的... 研究含极小摄动参数的一维对流扩散方程,应用多尺度有限元的高效计算格式求其数值解.构造的多尺度基函数能细致模拟边界层,迭代的自适应优化网格能精确逼近过渡点,通过Matlab模块化编程,从而在宏观尺度节省计算消耗,得到了范数度量下的一致收敛精确化模拟. 展开更多
关键词 奇异摄动边界层 优化网格 多尺度有限元法 一致收敛
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部