In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for th...The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
This paper considers the singular perturbation of a fourth order elliptic equation when the limit equation is elliptic-parabolic. The equation involves a positive parameter, a positive real number, a Laplacian operato...This paper considers the singular perturbation of a fourth order elliptic equation when the limit equation is elliptic-parabolic. The equation involves a positive parameter, a positive real number, a Laplacian operator, and sufficient smoothness. Under appropriate condition the sufficient condition of solvability is derived, the existence of solution is proved and a uniformly valid asymptotic solution of arbitrary order is given.展开更多
In this paper, we consider a class of singularly perturbed Dirichlet exterior problems for elliptic equations. Under the appropriate conditions we construct the formally asymptotic solution of the problem described. U...In this paper, we consider a class of singularly perturbed Dirichlet exterior problems for elliptic equations. Under the appropriate conditions we construct the formally asymptotic solution of the problem described. Using differential inequaltiy theory we prove the existence of the solution of original problem and the uniforly validity of the formal solution.展开更多
The paper considers the asymptotic solution of two-point boundary value problems εy” + A(x)y’ = 0, 0 ≤ x ≤ 1, when 0 1, A(x) is smooth with isolated zeros, y(0) = 0 and y(1) = 1. By using perturbation method, the...The paper considers the asymptotic solution of two-point boundary value problems εy” + A(x)y’ = 0, 0 ≤ x ≤ 1, when 0 1, A(x) is smooth with isolated zeros, y(0) = 0 and y(1) = 1. By using perturbation method, the limit asymptotic solutions of various cases are obtained. We provide a reliable and direct method for solving similar problems. The limiting solutions are constants in this paper, except in narrow boundary and interior layers of nonuniform convergence. These provide simple examples of boundary layer resonance.展开更多
In this paper, we study singular perturbation for a class of fourth order ellipticequation with a turning point. Under suitable conditions, the uniformly validasymptotic expansion of solution is obtained by using the ...In this paper, we study singular perturbation for a class of fourth order ellipticequation with a turning point. Under suitable conditions, the uniformly validasymptotic expansion of solution is obtained by using the comparison theorem.展开更多
The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtai...The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
The nonlinear singularly perturbed problems for elliptic equations with boundary perturbation are considered. Under suitable conditions, by using the theory of differential inequalities the asymptotic behavior of solu...The nonlinear singularly perturbed problems for elliptic equations with boundary perturbation are considered. Under suitable conditions, by using the theory of differential inequalities the asymptotic behavior of solutions for the boundary value problems is studied.展开更多
In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an alg...In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 .展开更多
In this paper, by using the techniques of differential inequalities, we prove the existence of the solutions of a singularly perturbed boundary value problem for the third order semilinear differential equation with a...In this paper, by using the techniques of differential inequalities, we prove the existence of the solutions of a singularly perturbed boundary value problem for the third order semilinear differential equation with a turning point.展开更多
The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the ...The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the generalized solution for the Dirichlet problems are studied.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
In this paper, by the theorem of differential inequalities, we prove the existence of the solution of a singularly perturbed boundary value problem of thirdorder nonlinear differential equation with two turning points.
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavio...The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.展开更多
In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The ...In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The conditions for exhibiting boundary and interior layers are given, and the corresponding asymptotic expansions of solutions are constructed.展开更多
A class of singularly perturbed problems for the nonlinear elliptic equations is considered. Under suitable conditions, using the theory of differential inequalities the asymptotic behavior of solution for the boundar...A class of singularly perturbed problems for the nonlinear elliptic equations is considered. Under suitable conditions, using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems are studied, which reduced equations possess two intersecting solutions.展开更多
The singularly perturbed generalized boundary value problems for semi-linear elliptic equations of fourth order are considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of generalize...The singularly perturbed generalized boundary value problems for semi-linear elliptic equations of fourth order are considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of generalized solutions for the boundary value problems are studied.展开更多
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘This paper considers the singular perturbation of a fourth order elliptic equation when the limit equation is elliptic-parabolic. The equation involves a positive parameter, a positive real number, a Laplacian operator, and sufficient smoothness. Under appropriate condition the sufficient condition of solvability is derived, the existence of solution is proved and a uniformly valid asymptotic solution of arbitrary order is given.
文摘In this paper, we consider a class of singularly perturbed Dirichlet exterior problems for elliptic equations. Under the appropriate conditions we construct the formally asymptotic solution of the problem described. Using differential inequaltiy theory we prove the existence of the solution of original problem and the uniforly validity of the formal solution.
文摘The paper considers the asymptotic solution of two-point boundary value problems εy” + A(x)y’ = 0, 0 ≤ x ≤ 1, when 0 1, A(x) is smooth with isolated zeros, y(0) = 0 and y(1) = 1. By using perturbation method, the limit asymptotic solutions of various cases are obtained. We provide a reliable and direct method for solving similar problems. The limiting solutions are constants in this paper, except in narrow boundary and interior layers of nonuniform convergence. These provide simple examples of boundary layer resonance.
文摘In this paper, we study singular perturbation for a class of fourth order ellipticequation with a turning point. Under suitable conditions, the uniformly validasymptotic expansion of solution is obtained by using the comparison theorem.
文摘The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
基金The NNSF(4067601610471039)of China+2 种基金the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Insitutes of Shanghai Municipal Education Commission(N.E03004)
文摘The nonlinear singularly perturbed problems for elliptic equations with boundary perturbation are considered. Under suitable conditions, by using the theory of differential inequalities the asymptotic behavior of solutions for the boundary value problems is studied.
文摘In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 .
基金The Projects supported by the National Natural Science Foundation of China
文摘In this paper, by using the techniques of differential inequalities, we prove the existence of the solutions of a singularly perturbed boundary value problem for the third order semilinear differential equation with a turning point.
文摘The singularly perturbed generalized boundary value problems far the quasi- linear elliptic equation of higher order are considered. Under suitable conditions, the existence, uniqueness and asymptotic behavior of the generalized solution for the Dirichlet problems are studied.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
文摘In this paper, by the theorem of differential inequalities, we prove the existence of the solution of a singularly perturbed boundary value problem of thirdorder nonlinear differential equation with two turning points.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
基金Supported by the National Natural Science Foundation of China (1 0 0 71 0 4 8)
文摘The singularly perturbed Robin boundary value problems for the semilinear elliptic equation are considered.Under suitable conditions and by using the fixed point theorem the existence,uniqueness and asymptotic behavior of solution for the boundary value problems are studied.
文摘In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The conditions for exhibiting boundary and interior layers are given, and the corresponding asymptotic expansions of solutions are constructed.
文摘A class of singularly perturbed problems for the nonlinear elliptic equations is considered. Under suitable conditions, using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems are studied, which reduced equations possess two intersecting solutions.
基金The Hundred People Project of Chinese Academy of Sciences.
文摘The singularly perturbed generalized boundary value problems for semi-linear elliptic equations of fourth order are considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of generalized solutions for the boundary value problems are studied.