Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and ...Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansio...In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansion of solution of any orders including boundary layer is obtained.展开更多
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s...Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
In thispaper,theexistence oftravelling frontsolution fora classofcom petition-diffu- sion system w ith high-order singular point w it = diw ixx - w αii fi(w ),x ∈R,t> 0,i= 1,2 (Ⅰ) is studied,w here di,αi>...In thispaper,theexistence oftravelling frontsolution fora classofcom petition-diffu- sion system w ith high-order singular point w it = diw ixx - w αii fi(w ),x ∈R,t> 0,i= 1,2 (Ⅰ) is studied,w here di,αi> 0 (i= 1,2) and w = (w 1(x,t),w 2(x,t)).Under the certain assum ptions on f,itis show ed thatifαi< 1 for som e i,then (Ⅰ) has no travelling frontsolution,ifαi≥1 for i= 1,2,then there isa c0,c:c0≥c> 0,w herecis called the m inim alwavespeed of(Ⅰ),such thatifc≥c0 orc= c,then (Ⅰ) has a travelling frontsolution,ifc< c,then (Ⅰ) hasno travel- ling frontsolution by using the shooting m ethod in com bination w ith a com pactness argum ent.展开更多
Under some certain assumptions, the physical model of the air combustion system was simplified to a laminar flame system. The mathematical model of the laminar flame system, which was built according to thermodynamics...Under some certain assumptions, the physical model of the air combustion system was simplified to a laminar flame system. The mathematical model of the laminar flame system, which was built according to thermodynamics theory and the corresponding conservative laws, was studied. With the aid of qualitative theory and method of ordinary differential equations, the location of singular points on the Rayleigh curves is determined, the qualitative structure and the stability of the singular points of the laminar flame system, which are located in the areas of deflagration and detonation, are given for different parameter values and uses of combustion. The phase portraits of the laminar flame system in the reaction-stagnation enthalpy and combustion velocity-stagnation enthalpy planes are shown in the corresponding figures.展开更多
In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
We consider the bifurcation of singular points near a double fold point in Z2 -symmetric nonlinear equations with two parameters,where the linearization has a two dimensional null space spanned by a symmetric null vec...We consider the bifurcation of singular points near a double fold point in Z2 -symmetric nonlinear equations with two parameters,where the linearization has a two dimensional null space spanned by a symmetric null vector and an ami-symmetric null vector. In particular, we show the existence of a turning point path and a pitchfork point path passing ihrough the double fold point and they are the only singular points nearby. Their nondegeneracy is confirmed. A supporting numerical example is also provided. The main tools for our analysis as well as the compulation are some extended systems.展开更多
Given an irreducible plane algebraic curve of degree d 〉 3, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular p...Given an irreducible plane algebraic curve of degree d 〉 3, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular points are ordinary. The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision. It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out. Without using multiprecision arithmetic, extensive numerical experiments show that our numerical procedures are accurate, efficient and robust, even if the coefficients of plane algebraic curves are inexact.展开更多
In this paper, we prove that the chord method and the modified chord method are also convergent to the solution x<sup>?</sup> of F(x)=0 if the dimension of the null space of F’(x<sup>?</sup>...In this paper, we prove that the chord method and the modified chord method are also convergent to the solution x<sup>?</sup> of F(x)=0 if the dimension of the null space of F’(x<sup>?</sup>) is】1.展开更多
We investigate the growth of solutions of the following complex linear di er-ential equation f″+A(z)f′+B(z)f=0,where A(z)and B(z)are analytic functions in -C-{z0},z0∈C.Some estimations of lower bounded of growth of...We investigate the growth of solutions of the following complex linear di er-ential equation f″+A(z)f′+B(z)f=0,where A(z)and B(z)are analytic functions in -C-{z0},z0∈C.Some estimations of lower bounded of growth of solutions of the di erential equation are obtained by using the concept of lower order.展开更多
The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for th...The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
文摘Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansion of solution of any orders including boundary layer is obtained.
基金Project(11JJ3080)supported by Natural Science Foundation of Hunan Province,ChinaProject(11CY012)supported by Cultivation in Hunan Colleges and Universities,ChinaProject(ET51007)supported by Youth Talent in Hunan University,China
文摘Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
基金Supported by the Key Program of National Natural Science Foundation of China (60634020), Doctoral Program Foundation of Ministry of Education of China (20050533028, 20070533132), Natural Science Foundation of Hunan Province (06J35145), and Program for New Century Excellent Talents in University (NCET-07-0867)
文摘In thispaper,theexistence oftravelling frontsolution fora classofcom petition-diffu- sion system w ith high-order singular point w it = diw ixx - w αii fi(w ),x ∈R,t> 0,i= 1,2 (Ⅰ) is studied,w here di,αi> 0 (i= 1,2) and w = (w 1(x,t),w 2(x,t)).Under the certain assum ptions on f,itis show ed thatifαi< 1 for som e i,then (Ⅰ) has no travelling frontsolution,ifαi≥1 for i= 1,2,then there isa c0,c:c0≥c> 0,w herecis called the m inim alwavespeed of(Ⅰ),such thatifc≥c0 orc= c,then (Ⅰ) has a travelling frontsolution,ifc< c,then (Ⅰ) hasno travel- ling frontsolution by using the shooting m ethod in com bination w ith a com pactness argum ent.
基金theNaturalScienceFoundationofBeijingMunicipalGovernment (No .1 0 42 0 0 7)andtheScientificResearchFoundationfortheReturnedOverseasChineseScholars,StateEducationMinistry (No .Lxkyjj2 0 0 41 6)
文摘Under some certain assumptions, the physical model of the air combustion system was simplified to a laminar flame system. The mathematical model of the laminar flame system, which was built according to thermodynamics theory and the corresponding conservative laws, was studied. With the aid of qualitative theory and method of ordinary differential equations, the location of singular points on the Rayleigh curves is determined, the qualitative structure and the stability of the singular points of the laminar flame system, which are located in the areas of deflagration and detonation, are given for different parameter values and uses of combustion. The phase portraits of the laminar flame system in the reaction-stagnation enthalpy and combustion velocity-stagnation enthalpy planes are shown in the corresponding figures.
文摘In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
文摘We consider the bifurcation of singular points near a double fold point in Z2 -symmetric nonlinear equations with two parameters,where the linearization has a two dimensional null space spanned by a symmetric null vector and an ami-symmetric null vector. In particular, we show the existence of a turning point path and a pitchfork point path passing ihrough the double fold point and they are the only singular points nearby. Their nondegeneracy is confirmed. A supporting numerical example is also provided. The main tools for our analysis as well as the compulation are some extended systems.
基金The NSF (61033012,10801023,11171052,10771028) of China
文摘Given an irreducible plane algebraic curve of degree d 〉 3, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular points are ordinary. The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision. It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out. Without using multiprecision arithmetic, extensive numerical experiments show that our numerical procedures are accurate, efficient and robust, even if the coefficients of plane algebraic curves are inexact.
文摘In this paper, we prove that the chord method and the modified chord method are also convergent to the solution x<sup>?</sup> of F(x)=0 if the dimension of the null space of F’(x<sup>?</sup>) is】1.
基金National Natural Science Foundation of China(11861023)the Foundation of Science and Technology project of Guizhou Province of China([2018]5769-05)。
文摘We investigate the growth of solutions of the following complex linear di er-ential equation f″+A(z)f′+B(z)f=0,where A(z)and B(z)are analytic functions in -C-{z0},z0∈C.Some estimations of lower bounded of growth of solutions of the di erential equation are obtained by using the concept of lower order.
文摘The singularly perturbed elliptic equation boundary value problem with a curve of turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.