Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An appr...Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An approach for aeroelastic robust stability analysis taking into account the perturbations of structural mass and stiffness is developed. Applying the perturbation method and harmonic unsteady aerodynamic forces, the frequency-domain linear fractal transformation (LFT) representation of perturbed aeroelastic system is modeled. Then, the robust stability is analyzed by using the structured singular value ,u-method. The numerical results of a bi-spar wing show its effectiveness and low computational time in dealing with the robust problems with mass and stiffness perturbations. In engineering analysis for solving aeroelastic problems, the robust approach can be applied to flutter analysis for airplane with the fuel load variation and taking the damage conditions into consideration.展开更多
We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens...We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens only on two disjoint unit circles and the initial data are two different constant states, global solutions are constructed and some new phenomena are discovered. In the analysis, we first construct the solution for 0 ≤ t 〈 T*.Then, when T* ≤ t 〈 T', we get a new shock wave between two rarefactions, and then, when t 〉 T', another shock wave between two shock waves occurs. Finally, we give the large time behavior of the solution when t → ∞. The technique does not involve dimensional reduction or coordinate transformation.展开更多
A new method of designing a variable structure controller for uncertain singular system is proposed in this paper. By introducing integral transformation, discontinuous control law is replaced by an approximately cont...A new method of designing a variable structure controller for uncertain singular system is proposed in this paper. By introducing integral transformation, discontinuous control law is replaced by an approximately continuous one,and the switching frequency of the variable structure control is greatly reduced and the chattering which usually occurs is ordinary variable structure control system call be effectively suppressed.展开更多
The robust stability of systems under both plant and controller perturbations is analyzed, with an emphasis on additivenorm-bounded perturbation. Choosing the interconnection matrix M makes Δ(s) block diagonal matric...The robust stability of systems under both plant and controller perturbations is analyzed, with an emphasis on additivenorm-bounded perturbation. Choosing the interconnection matrix M makes Δ(s) block diagonal matrices and absorbing any matrix makes ‖Δ(s)‖∞<1, the problem can be recast into a small structured singular value (μ) problem. If 2S + F ≤ 3, μ(M) = infσ(DMD-1). In this paper, the main result is supωμ(M)=‖M‖∞, thus the structured singular value(μ) problem for robust stability of SISO systems subject to additive norm-bounded perturbation, can be recast into H∞ control problem. Moreover, robust stability of MIMO systems can be unified in the same framework.展开更多
In this paper.at the first time,we consider the stabilization of discrete-time singular variable structure system with disturbance.a novel controller is designed by using variable structcontrol strategy.It is shown th...In this paper.at the first time,we consider the stabilization of discrete-time singular variable structure system with disturbance.a novel controller is designed by using variable structcontrol strategy.It is shown that under the assumption of being controllable,the control we designed can make the closed-loop system ultimate asymptotic stable.A sufficient condition which ensures the trajectory of system reachs predefined boundary layer at a finite time is constructed.展开更多
We investigate the global structures of the non-selfsimilar solutions for n-dimensional(n-D) nonhomogeneous Burgers equation, in which the initial data has two different constant states, which are separated by a(n-1)-...We investigate the global structures of the non-selfsimilar solutions for n-dimensional(n-D) nonhomogeneous Burgers equation, in which the initial data has two different constant states, which are separated by a(n-1)-dimensional sphere. We first obtain the expressions of n-D shock waves and rarefaction waves emitting from the initial discontinuity. Then, by estimating the new kind of interactions of the related elementary waves,we obtain the global structures of the non-selfsimilar solutions, in which ingenious techniques are proposed to construct the n-D shock waves. The asymptotic behaviors with geometric structures are also proved.展开更多
Uncertainties denote the operators which describe data error, numerical error and model error in the mathematical methods. The study of aeroelasticity with uncertainty embedded in the subsystems, such as the uncertain...Uncertainties denote the operators which describe data error, numerical error and model error in the mathematical methods. The study of aeroelasticity with uncertainty embedded in the subsystems, such as the uncertainty in the modeling of structures and aerodynamics, has been a hot topic in the last decades. In this paper, advances of the analysis and design in aeroelasticity with uncertainty are summarized in detail. According to the non-probabilistic or probabilistic uncer- tainty, the developments of theories, methods and experiments with application to both robust and probabilistic aeroelasticity analysis are presented, respectively. In addition, the advances in aeroelastic design considering either probabilistic or non-probabilistic uncertainties are introduced along with aeroelastic analysis. This review focuses on the robust aeroelasticity study based on the structured singular value method, namely the ~t method. It covers the numerical calculation algo- rithm of the structured singular value, uncertainty model construction, robust aeroelastic stability analysis algorithms, uncertainty level verification, and robust flutter boundary prediction in the flight test, etc. The key results and conclusions are explored. Finally, several promising problems on aeroelasticity with uncertainty are proposed for future investigation.展开更多
Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity a...Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity are obtained in the time domain. Then robust LCO analysis of the identified model set is performed. First, the proper orthonormal basis is constructed based on the on-line dynamic poles of the aeroelastic system. Accordingly, the identification problem of uncertain model is converted to a nonlinear optimization of the upper and lower bounds for uncertain parameters estimation. By replacing the identified memoryless nonlinear operators by its related sinusoidal-input describing function, the Linear Fractional Transformation (LFT) technique is applied to the modeling process. Finally, the structured singular value(μ) method is applied to robust LCO analysis. An example of a two-degree wing section is carded out to validate the framework above. Results indicate that the dynamic characteristics and model uncertainties of the aeroelastic system can be depicted by the identified uncertain model set. The robust LCO magnitude of pitch angle for the identified uncertain model is lower than that of the nominal model at the same velocity. This method can be applied to robust flutter and LCO prediction.展开更多
基金National Natural Science Foundation of China (10432040, 90716006)
文摘Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An approach for aeroelastic robust stability analysis taking into account the perturbations of structural mass and stiffness is developed. Applying the perturbation method and harmonic unsteady aerodynamic forces, the frequency-domain linear fractal transformation (LFT) representation of perturbed aeroelastic system is modeled. Then, the robust stability is analyzed by using the structured singular value ,u-method. The numerical results of a bi-spar wing show its effectiveness and low computational time in dealing with the robust problems with mass and stiffness perturbations. In engineering analysis for solving aeroelastic problems, the robust approach can be applied to flutter analysis for airplane with the fuel load variation and taking the damage conditions into consideration.
基金supported by the NationalNatural Science Foundation of China(11371042,1471028,11601021)the Beijing Natural Science Foundation(1142001)
文摘We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens only on two disjoint unit circles and the initial data are two different constant states, global solutions are constructed and some new phenomena are discovered. In the analysis, we first construct the solution for 0 ≤ t 〈 T*.Then, when T* ≤ t 〈 T', we get a new shock wave between two rarefactions, and then, when t 〉 T', another shock wave between two shock waves occurs. Finally, we give the large time behavior of the solution when t → ∞. The technique does not involve dimensional reduction or coordinate transformation.
文摘A new method of designing a variable structure controller for uncertain singular system is proposed in this paper. By introducing integral transformation, discontinuous control law is replaced by an approximately continuous one,and the switching frequency of the variable structure control is greatly reduced and the chattering which usually occurs is ordinary variable structure control system call be effectively suppressed.
基金Sponsored by the National Natural Science Foundation(69904003) and RFDP(1999000701)
文摘The robust stability of systems under both plant and controller perturbations is analyzed, with an emphasis on additivenorm-bounded perturbation. Choosing the interconnection matrix M makes Δ(s) block diagonal matrices and absorbing any matrix makes ‖Δ(s)‖∞<1, the problem can be recast into a small structured singular value (μ) problem. If 2S + F ≤ 3, μ(M) = infσ(DMD-1). In this paper, the main result is supωμ(M)=‖M‖∞, thus the structured singular value(μ) problem for robust stability of SISO systems subject to additive norm-bounded perturbation, can be recast into H∞ control problem. Moreover, robust stability of MIMO systems can be unified in the same framework.
文摘In this paper.at the first time,we consider the stabilization of discrete-time singular variable structure system with disturbance.a novel controller is designed by using variable structcontrol strategy.It is shown that under the assumption of being controllable,the control we designed can make the closed-loop system ultimate asymptotic stable.A sufficient condition which ensures the trajectory of system reachs predefined boundary layer at a finite time is constructed.
基金partly supported by the National Natural Science Foundation of China (Grant11701551 and Grant 11971024)partly supported by the National Natural Science Foundation of China (Grant 11471332)。
文摘We investigate the global structures of the non-selfsimilar solutions for n-dimensional(n-D) nonhomogeneous Burgers equation, in which the initial data has two different constant states, which are separated by a(n-1)-dimensional sphere. We first obtain the expressions of n-D shock waves and rarefaction waves emitting from the initial discontinuity. Then, by estimating the new kind of interactions of the related elementary waves,we obtain the global structures of the non-selfsimilar solutions, in which ingenious techniques are proposed to construct the n-D shock waves. The asymptotic behaviors with geometric structures are also proved.
基金co-supported by the National Natural Science Foundation of China (Nos. 11302011 and 11172025)the Research Fund for the Doctoral Program of Higher Education of China (No. 20131102120051)
文摘Uncertainties denote the operators which describe data error, numerical error and model error in the mathematical methods. The study of aeroelasticity with uncertainty embedded in the subsystems, such as the uncertainty in the modeling of structures and aerodynamics, has been a hot topic in the last decades. In this paper, advances of the analysis and design in aeroelasticity with uncertainty are summarized in detail. According to the non-probabilistic or probabilistic uncer- tainty, the developments of theories, methods and experiments with application to both robust and probabilistic aeroelasticity analysis are presented, respectively. In addition, the advances in aeroelastic design considering either probabilistic or non-probabilistic uncertainties are introduced along with aeroelastic analysis. This review focuses on the robust aeroelasticity study based on the structured singular value method, namely the ~t method. It covers the numerical calculation algo- rithm of the structured singular value, uncertainty model construction, robust aeroelastic stability analysis algorithms, uncertainty level verification, and robust flutter boundary prediction in the flight test, etc. The key results and conclusions are explored. Finally, several promising problems on aeroelasticity with uncertainty are proposed for future investigation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716006 and 10902006)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20091102110015)the Innovation Foundation of BUAA for PhD Graduates
文摘Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity are obtained in the time domain. Then robust LCO analysis of the identified model set is performed. First, the proper orthonormal basis is constructed based on the on-line dynamic poles of the aeroelastic system. Accordingly, the identification problem of uncertain model is converted to a nonlinear optimization of the upper and lower bounds for uncertain parameters estimation. By replacing the identified memoryless nonlinear operators by its related sinusoidal-input describing function, the Linear Fractional Transformation (LFT) technique is applied to the modeling process. Finally, the structured singular value(μ) method is applied to robust LCO analysis. An example of a two-degree wing section is carded out to validate the framework above. Results indicate that the dynamic characteristics and model uncertainties of the aeroelastic system can be depicted by the identified uncertain model set. The robust LCO magnitude of pitch angle for the identified uncertain model is lower than that of the nominal model at the same velocity. This method can be applied to robust flutter and LCO prediction.