The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissi...In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is propo...The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.展开更多
A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where ...A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained.展开更多
The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which...The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.展开更多
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design pr...In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.展开更多
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions ...This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.展开更多
Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cann...Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the reference signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix i...This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain l...Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.展开更多
This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- an...This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.展开更多
The problem of robust stabilization for uncertain singular time-delay systems is studied. First, a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given, which is less conse...The problem of robust stabilization for uncertain singular time-delay systems is studied. First, a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given, which is less conservative. Using this result, the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed, Finally, two examples are given to illustrate the effectiveness of the results.展开更多
The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast ...The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.展开更多
The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed ...The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.展开更多
A control synthesis method for output regulation based on singular perturbation theory combined with inverting design is considered for a class of nonaffine nonlinear systems. The resulting control signal is defined a...A control synthesis method for output regulation based on singular perturbation theory combined with inverting design is considered for a class of nonaffine nonlinear systems. The resulting control signal is defined as a solution to "fast" dynamics which inverts a series error model, whose state is exponentially stable. It is shown that, under sufficient conditions being consistent with the assumptions of singular perturbation theory, this problem is solvable with (ε) tracking error if and only if a set of first-order nonlinear partial differential equations are solvable. The control law can be easily constructed and the simulations show the feasibility and effectiveness of the controller.展开更多
Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an ...Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.展开更多
In this paper, the singular perturbation of initial value problem for nonlinear second order vector differential equationsis discussed, where r>0 is an arbitrary constant, e>0 is a small parameter, x, f,a and Un...In this paper, the singular perturbation of initial value problem for nonlinear second order vector differential equationsis discussed, where r>0 is an arbitrary constant, e>0 is a small parameter, x, f,a and Under suitable assumptions, by using the method of many-parameter expansion and the technique of diagonalization, the existence oj the solution of perturbation problem is proved and its uniformly valid asymptotic expansion of higher order is derived.展开更多
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China (No.60904009,No.60974004)
文摘In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(60774016).
文摘The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.
基金the Outstanding Oversea Award of the Chinese Academy of Sciences (No. 2004-1-4)the Natural Science Foundationof China (No. 60534010)
文摘A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained.
基金the National Natural Science Foundation of China (No. 50477042)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20040422052 )the National Natural Science Foundation of Shandong Province (No.Z2004G04)
文摘The design of a functional observer and reduced-order observer with internal delay for linear singular timedelay systems with unknown inputs is discussed. The sufficient conditions of the existence of observers, which are normal linear time-delay systems, and the corresponding design steps are presented via linear matrix inequality(LMI). Moreover, the observer-based feedback stabilizing controller is obtained. Three examples are given to show the effectiveness of the proposed methods.
基金Project (No. 60574081) supported by the National Natural ScienceFoundation of China
文摘In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China(No.60074007).
文摘This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
基金This project was supported by the National Nature Science Foundation (60374015) and Shanxi Province Nature Science Foundation (2003A15).
文摘Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the reference signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(No.60474013)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050424002)the Doctoral Foundation of Shandong Province (No. 2004BS01010)
文摘This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.
文摘Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.
基金supported by the National Natural Science Foundation of China (Grant No.10771212)the Natural Science Foundation of Jiangsu Province (Grant No.BK2008119)the Natural Science Foundation of the Education Division of Jiangsu Province (Grant No.08KJB110011)
文摘This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.
基金the National Natural Science Foundation of China (60474047)Key Project of Natural Science Foundation of Guangdong Province (06105413).
文摘The problem of robust stabilization for uncertain singular time-delay systems is studied. First, a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given, which is less conservative. Using this result, the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed, Finally, two examples are given to illustrate the effectiveness of the results.
基金the National Natural Science Foundation of China(No.60574023,40776051)the Natural Science Foundation of Zhejiang Province(No.Y107232)+1 种基金the Scientific Research Found of Zhejiang Provincial Education Department(No.Y200702660)the 123 Talent Funding Project of China Jiliang University(No.2006RC17)
文摘The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.
基金supported by the National Natural Science Foundation of China(61374035)the Fundamental Research Funds for the Central Universities(20720150177)
文摘The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.
基金supported by the National Natural Science Foundation of China (No.60274009)Specialized Research Fund for the Doctoral Program of Higher Education (No.20020145007)
文摘A control synthesis method for output regulation based on singular perturbation theory combined with inverting design is considered for a class of nonaffine nonlinear systems. The resulting control signal is defined as a solution to "fast" dynamics which inverts a series error model, whose state is exponentially stable. It is shown that, under sufficient conditions being consistent with the assumptions of singular perturbation theory, this problem is solvable with (ε) tracking error if and only if a set of first-order nonlinear partial differential equations are solvable. The control law can be easily constructed and the simulations show the feasibility and effectiveness of the controller.
基金supported by the National Natural Science Foundation of China(61374035)
文摘Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.
文摘In this paper, the singular perturbation of initial value problem for nonlinear second order vector differential equationsis discussed, where r>0 is an arbitrary constant, e>0 is a small parameter, x, f,a and Under suitable assumptions, by using the method of many-parameter expansion and the technique of diagonalization, the existence oj the solution of perturbation problem is proved and its uniformly valid asymptotic expansion of higher order is derived.