The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix ar...The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demon- strated in our calculation results.展开更多
The multi-variable finite element algorithm based on the generalized Gulerkin's method is more flexible to establish a finite element model in the continuum mechanics. By using this algorithm and numerical tests a...The multi-variable finite element algorithm based on the generalized Gulerkin's method is more flexible to establish a finite element model in the continuum mechanics. By using this algorithm and numerical tests a new singular finite element for elasto-plastic fracture analysis has been formulated. The results of numerical tests show that the new element possesses high accuracy and good performance. Some rules for formulating a multi-variable singular finite element are also discussed in this paper.展开更多
In this paper, we shall give a group of new isoparametric elements suitable .for St.Wnant's torsion of a bar with vertical cracks. These elements are eight-pointisoparametric element, quarter eight-Point isoparame...In this paper, we shall give a group of new isoparametric elements suitable .for St.Wnant's torsion of a bar with vertical cracks. These elements are eight-pointisoparametric element, quarter eight-Point isoparametric element and eight-pointisoparametric transition element. Among these elements, the second and the thirdelements possess the singularity of order r-1/2 at crack tip. Using these elements, wehave completed the calculations of St. Venant's torsion for a cylinder with a radialvertical crack. The calculated results show that the isoparametric elements given bythis paper have ideal accuracy. good convergence. high speed of convergence, lowfreedom and little computational time, and so they can be widely applied to practice.展开更多
The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element ...The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element methods) for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART (Projection and Angular & Radial Transformation). The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem, whose degree of freedoms is about 340,000, is implemented successfully. The results show that, the near singularity is primarily introduced by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower.展开更多
We analyze the convergence of multigrid methods applied to finite elementequations of second order with singularities caused by reentrant angles and abruptchanges in the boundary conditions. Provided much more weaker ...We analyze the convergence of multigrid methods applied to finite elementequations of second order with singularities caused by reentrant angles and abruptchanges in the boundary conditions. Provided much more weaker demand of clas-sical multigrid proofs, it is shown in this paper that, for symmetric and positivedefinite problems in the presence of singularities, multigrid algorithms with evenone smoothing step converge at a rate which is independent of the number of lev-els or unknowns. Furthermore, we extend this result to the nonsymmetric andindefinite problems.展开更多
Many researchers have focused their efforts on fatigue failures occurring on weld toes. In recent years, more and more fatigue failures occur on weld roots. Therefore, it is important to explore the behaviour of weld ...Many researchers have focused their efforts on fatigue failures occurring on weld toes. In recent years, more and more fatigue failures occur on weld roots. Therefore, it is important to explore the behaviour of weld root fatigues. This paper investigates numerically the Magnification factors (Mk) for types of semi-elliptical cracks on the weld root of a T-butt joint. The geometry of the joint is determined by four important parameters: crack depth ratio, crack shape ratio, weld leg ratio and weld angle. A singular element approach is used to generate the corresponding finite element meshes. For each set of given four parameters of the semi-elliptical root crack, the corresponding T-butt joint is numerically simulated and its Mk at the deepest point of the weld root crack is obtained for the respective tension and shear loads. The variation range of the four parameters covers 750 cases for each load, totaling 1500 simulations are completed. The numerical results obtained are then represented by the curve to explore the effects of four parameters on the Mk. To obtain an approximate equation representing Mk as a function of the four parameters for each load, a multiple regression method is adopted and the related regression analysis is performed. The error distributions of the two approximate equations are compared with the finite element data. It is confirmed that the obtained approximate functions fit very well to the database from which they are derived. Therefore, these two equations present a valuable reference for engineering applications in T-butt joint designs.展开更多
基金supported by the Funds for Creative Research Groups of China (50921001)the State Key Development Program for Basic Research of China (2010CB832704)
文摘The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demon- strated in our calculation results.
文摘The multi-variable finite element algorithm based on the generalized Gulerkin's method is more flexible to establish a finite element model in the continuum mechanics. By using this algorithm and numerical tests a new singular finite element for elasto-plastic fracture analysis has been formulated. The results of numerical tests show that the new element possesses high accuracy and good performance. Some rules for formulating a multi-variable singular finite element are also discussed in this paper.
文摘In this paper, we shall give a group of new isoparametric elements suitable .for St.Wnant's torsion of a bar with vertical cracks. These elements are eight-pointisoparametric element, quarter eight-Point isoparametric element and eight-pointisoparametric transition element. Among these elements, the second and the thirdelements possess the singularity of order r-1/2 at crack tip. Using these elements, wehave completed the calculations of St. Venant's torsion for a cylinder with a radialvertical crack. The calculated results show that the isoparametric elements given bythis paper have ideal accuracy. good convergence. high speed of convergence, lowfreedom and little computational time, and so they can be widely applied to practice.
基金supported by the National Natural Science Foundation of China(11304344,11404364)the Project of Hubei Provincial Department of Education(D20141803)+1 种基金the Natural Science Foundation of Hubei Province(2014CFB378)the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(BK201604)
文摘The numerical quadrature methods for dealing with the problems of singular and near-singular integrals caused by Burton-Miller method are proposed, by which the conventional and fast multipole BEMs (boundary element methods) for 3D acoustic problems based on constant elements are improved. To solve the problem of singular integrals, a Hadamard finite-part integral method is presented, which is a simplified combination of the methods proposed by Kirkup and Wolf. The problem of near-singular integrals is overcome by the simple method of polar transformation and the more complex method of PART (Projection and Angular & Radial Transformation). The effectiveness of these methods for solving the singular and near-singular problems is validated through comparing with the results computed by the analytical method and/or the commercial software LMS Virtual.Lab. In addition, the influence of the near-singular integral problem on the computational precisions is analyzed by computing the errors relative to the exact solution. The computational complexities of the conventional and fast multipole BEM are analyzed and compared through numerical computations. A large-scale acoustic scattering problem, whose degree of freedoms is about 340,000, is implemented successfully. The results show that, the near singularity is primarily introduced by the hyper-singular kernel, and has great influences on the precision of the solution. The precision of fast multipole BEM is the same as conventional BEM, but the computational complexities are much lower.
文摘We analyze the convergence of multigrid methods applied to finite elementequations of second order with singularities caused by reentrant angles and abruptchanges in the boundary conditions. Provided much more weaker demand of clas-sical multigrid proofs, it is shown in this paper that, for symmetric and positivedefinite problems in the presence of singularities, multigrid algorithms with evenone smoothing step converge at a rate which is independent of the number of lev-els or unknowns. Furthermore, we extend this result to the nonsymmetric andindefinite problems.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2011CB711102)
文摘Many researchers have focused their efforts on fatigue failures occurring on weld toes. In recent years, more and more fatigue failures occur on weld roots. Therefore, it is important to explore the behaviour of weld root fatigues. This paper investigates numerically the Magnification factors (Mk) for types of semi-elliptical cracks on the weld root of a T-butt joint. The geometry of the joint is determined by four important parameters: crack depth ratio, crack shape ratio, weld leg ratio and weld angle. A singular element approach is used to generate the corresponding finite element meshes. For each set of given four parameters of the semi-elliptical root crack, the corresponding T-butt joint is numerically simulated and its Mk at the deepest point of the weld root crack is obtained for the respective tension and shear loads. The variation range of the four parameters covers 750 cases for each load, totaling 1500 simulations are completed. The numerical results obtained are then represented by the curve to explore the effects of four parameters on the Mk. To obtain an approximate equation representing Mk as a function of the four parameters for each load, a multiple regression method is adopted and the related regression analysis is performed. The error distributions of the two approximate equations are compared with the finite element data. It is confirmed that the obtained approximate functions fit very well to the database from which they are derived. Therefore, these two equations present a valuable reference for engineering applications in T-butt joint designs.