Making exact approximations to solve equations distinguishes applied mathematicians from pure mathematicians, physicists, and engineers. Perturbation problems, both regular and singular, are pervasive in diverse field...Making exact approximations to solve equations distinguishes applied mathematicians from pure mathematicians, physicists, and engineers. Perturbation problems, both regular and singular, are pervasive in diverse fields of applied mathematics and engineering. This research paper provides a comprehensive overview of algebraic methods for solving perturbation problems, featuring a comparative analysis of their strengths and limitations. Serving as a valuable resource for researchers and practitioners, it offers insights and guidance for tackling perturbation problems in various disciplines, facilitating the advancement of applied mathematics and engineering.展开更多
The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two mov...The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 degree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback linearization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a singular perturbation approach, the superposition of these two control actions in the longitudinal plane and in the lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking specified attitude, moving direction and speed in 3-D space are presented.展开更多
Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region....Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.展开更多
In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the re...In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the regular perturbation method, the outer solution of the original problem is obtained. Secondly, by using the stretched variable and the expansion theory of power series the initial layer of the solution is constructed. And then, by using the theory of differential inequalities, the asymptotic behavior of the solution for the initial boundary value problems is studied. Finally, using some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.展开更多
The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to en...The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.展开更多
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original pr...The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.展开更多
The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtai...The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.展开更多
In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and t...In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.展开更多
The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), ...The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), mu (2)/epsilon --> 0(epsilon --> 0) and epsilon = mu (2), the formal asymptotic solutions are constructed by the method of two steps expansions and the existences of solution are proved by using the differential inequality method. In addition, the uniformly valid estimations of the remainder term are given as well.展开更多
A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation...A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation and the momentum exchange between the vegetation and non-vegetation zones are considered. The depth-averaged streamwise velocity is solved by the singular perturbation method, while the Reynolds stress is calculated based on the results of the streamwise velocity. Comparisons with the experimental data indicate that the accuracy of prediction is significantly improved by introducing a term for the secondary current in the model. A sensitivity analysis shows that a sound choice of the secondary current intensity coefficient is important for an accurate prediction of the depth-averaged streamwise velocity near the vegetation and non-vegetation interfaces, and the drag force coefficient is crucial for predictions in the vegetation zone.展开更多
This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p...This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p(y''(0),y'''(0))=0,q(y''(1),y'''(1))=0 where f:[0,1]×R3→R is continuous,p,q:R2→R are continuous.Under certain conditions,by introducing an appropriate stretching transformation and constructing boundary layer corrective terms,an asymptotic expansion for the solution of the problem is obtained.And then the uniformly validity of solution is proved by using the differential inequalities.展开更多
A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution fo...A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.展开更多
This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matr...This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.展开更多
A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solut...A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solution of the original problem was obtained. Secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer was constructed. Finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems was studied, and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation were discussed.展开更多
In this paper, using the interpolation perturbation method. the author seeks tosolve several nonlinear problems. Numerical examples show that the method Df thispaper has good accuracy.
The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution...The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.展开更多
A class of nonlinear initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions and using the theory of differential inequalities the asymptoti...A class of nonlinear initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions and using the theory of differential inequalities the asymptotic solution of the initial boundary value problems is studied.展开更多
In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
In this paper we consider the initial-boundary value problems for a class ofapplications, such as biomathematics and biochemistry.Applying the method ofcomposile expansion we construct the formally asymptotic solution...In this paper we consider the initial-boundary value problems for a class ofapplications, such as biomathematics and biochemistry.Applying the method ofcomposile expansion we construct the formally asymptotic solution of the problemdescribed. With the help of theory of upper and lower solutions we prove the uniformlyvalidity of the formal solution and the existence of solution of the original problem.展开更多
The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. ...The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.展开更多
文摘Making exact approximations to solve equations distinguishes applied mathematicians from pure mathematicians, physicists, and engineers. Perturbation problems, both regular and singular, are pervasive in diverse fields of applied mathematics and engineering. This research paper provides a comprehensive overview of algebraic methods for solving perturbation problems, featuring a comparative analysis of their strengths and limitations. Serving as a valuable resource for researchers and practitioners, it offers insights and guidance for tackling perturbation problems in various disciplines, facilitating the advancement of applied mathematics and engineering.
基金Supported by the Scholarship Foundation of China Scholarship Council~~
文摘The attitude control problem and the guidance problem are solved in 3-D for a buoyancy-driven airship actuated by the combined effects of an internal air bladder which modulates the airshiprs net weight and of two moving masses which modulate its center of mass. A simple and clear modeling is introduced to derive the 8 degree of freedom (DOF) mathematical model. Nonlinear control loops are derived through maximal feedback linearization with internal stability for both dynamics in the longitudinal plane and in the lateral plane. Based on a singular perturbation approach, the superposition of these two control actions in the longitudinal plane and in the lateral plane is shown to achieve the control of the dynamics in 3-D space. The simulations of the airship tracking specified attitude, moving direction and speed in 3-D space are presented.
基金supported by the Educational Department Foundation of Fujian Province of China(Nos. JA08140 and A0610025)the Scientific Research Foundation of Zhejiang University of Scienceand Technology (No. 2008050)the National Natural Science Foundation of China (No. 50679074)
文摘Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.
基金Project supported by the National Natural Science Foundation of China (Nos. 40676016, 10471039), the National Key Basic Research Special Foundation of China (No. 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (No. KZCX3-SW-221) and in part by EInstitutes of Shanghai Municipal Education Commission (No. E03004)
文摘In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the regular perturbation method, the outer solution of the original problem is obtained. Secondly, by using the stretched variable and the expansion theory of power series the initial layer of the solution is constructed. And then, by using the theory of differential inequalities, the asymptotic behavior of the solution for the initial boundary value problems is studied. Finally, using some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
基金financially supported by the National Basic Research Program of China(Grant No.2011CB013702)the National Natural Science Foundation of China(Grant No.50979113).1
文摘The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.
基金Supported by the National Natural Science Foundation of China (90111011 and 10471039)the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)the Natural Science Foundation of Zhejiang (Y604127).
文摘The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
文摘The nonlinear nonlocal singularly perturbed boundary value problems for elliptic equation with boundary perturbation was considered.Under suitable conditions,firstly,the outer solution of the original problem is obtained,secondly,using the stretched variable,the composing expansion method and the expanding theory of power series the boundary layer is constructed,finally,using the theory of differential inequalities the asymptotic behavior of solution for the boundary value problems is studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.
文摘The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), mu (2)/epsilon --> 0(epsilon --> 0) and epsilon = mu (2), the formal asymptotic solutions are constructed by the method of two steps expansions and the existences of solution are proved by using the differential inequality method. In addition, the uniformly valid estimations of the remainder term are given as well.
基金Project supported by the National Natural Science Foundation of China(Nos.51439007 and11372232)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130141110016)
文摘A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation and the momentum exchange between the vegetation and non-vegetation zones are considered. The depth-averaged streamwise velocity is solved by the singular perturbation method, while the Reynolds stress is calculated based on the results of the streamwise velocity. Comparisons with the experimental data indicate that the accuracy of prediction is significantly improved by introducing a term for the secondary current in the model. A sensitivity analysis shows that a sound choice of the secondary current intensity coefficient is important for an accurate prediction of the depth-averaged streamwise velocity near the vegetation and non-vegetation interfaces, and the drag force coefficient is crucial for predictions in the vegetation zone.
文摘This paper is devoted to study the following the singularly perturbed fourth-order ordinary differential equation ∈y(4) =f(t,y',y'',y'''),0t1,0ε1 with the nonlinear boundary conditions y(0)=y'(1)=0,p(y''(0),y'''(0))=0,q(y''(1),y'''(1))=0 where f:[0,1]×R3→R is continuous,p,q:R2→R are continuous.Under certain conditions,by introducing an appropriate stretching transformation and constructing boundary layer corrective terms,an asymptotic expansion for the solution of the problem is obtained.And then the uniformly validity of solution is proved by using the differential inequalities.
基金Project supported by the National Natural Science Foundation of China (No. 90211004)the Hundred Talents Project of Chinese Academy of Sciences, China
文摘A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.
基金Project supported by the National Natural Science Foundation of China(No.10672194)the China-Russia Cooperative Project(the National Natural Science Foundation of China and the Russian Foundation for Basic Research)(No.10811120012)
文摘This paper presents a precise method for solving singularly perturbed boundary-value problems with the boundary layer at one end. The method divides the interval evenly and gives a set of algebraic equations in a matrix form by the precise integration relationship of each segment. Substituting the boundary conditions into the algebraic equations, the coefficient matrix can be transformed to the block tridiagonal matrix. Considering the nature of the problem, an efficient reduction method is given for solving singular perturbation problems. Since the precise integration relationship introduces no discrete error in the discrete process, the present method has high precision. Numerical examples show the validity of the present method.
基金Project supported by the National Natural Science Foundation of China (Nos. 90111011 and 10471039) the E-Institute of Shanghai Municipal Education Commission (N. E03004) the Natural Science Foundation of Zhejiang Province (Y604127)
文摘A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solution of the original problem was obtained. Secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer was constructed. Finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems was studied, and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation were discussed.
文摘In this paper, using the interpolation perturbation method. the author seeks tosolve several nonlinear problems. Numerical examples show that the method Df thispaper has good accuracy.
基金Supported by the National Natural Scince Foundation of China( 1 0 0 71 0 4 8) ,and the"Hundred TalentsProject"of Chinese Academy of Sciences
文摘The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.
基金Supported by the National Natural Science Foundation of China (40676016 and 10471039)the National Key Basic Research Special Foundation of China (2004CB418304)+1 种基金the Key Basic Research Foundation of the Chinese Academy of Sciences (KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission (N.E03004).
文摘A class of nonlinear initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions and using the theory of differential inequalities the asymptotic solution of the initial boundary value problems is studied.
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
文摘In this paper we consider the initial-boundary value problems for a class ofapplications, such as biomathematics and biochemistry.Applying the method ofcomposile expansion we construct the formally asymptotic solution of the problemdescribed. With the help of theory of upper and lower solutions we prove the uniformlyvalidity of the formal solution and the existence of solution of the original problem.
基金This work was supported by the application foundation for basic research of Jiangsu(No.BJ98057)the innovation foundation for the scientific research of Nanjing University of Aeronautics and Astronautics(No.Y0487-031)
文摘The Free-floating Flexible Dual-arm Space Robot is a highly nonlinear and coupled dynamics system. In this paper, the dynamic model is derived of a Free-floating Flexible Dual-arm Space Robot holding a rigid payload. Furthermore, according to the singular perturbation method, the system is separated into a slow subsystem representing rigid body motion of the robot and a fast subsystem representing the flexible link dynamics. For the slow subsystem, based on the second method of Lyapunov, using simple quantitative bounds on the model uncertainties, a robust tracking controller design is used during the trajectory tracking phase. The optimal control method is designed in the fast subsystem to guarantee the exponential stability. With the combination of the two above, the system can track the expected trajectory accurately, even though with uncertainty in model parameters, and its flexible vibration gets suppressed, too. Finally, some simulation tests have been conducted to verify the effectiveness of the proposed methods.