In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption ...In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.展开更多
This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- an...This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v,...In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, de...Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, developed by A.C.Lazer, Schauder fixed point theorem and the Leray-Schauder degree theory, respectively.展开更多
The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. A...The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.展开更多
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
We establish the existence of positive solutions for singular boundary value problems of coupled systems? The proof relies on Schauder’s fixed point theorem. Some recent results in the literature are generalized and ...We establish the existence of positive solutions for singular boundary value problems of coupled systems? The proof relies on Schauder’s fixed point theorem. Some recent results in the literature are generalized and improved.展开更多
We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The ac...We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.展开更多
In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term ...In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term of the problem involved also possesses singularities at the nodes. As an application, certain singular integral equation is discussed.展开更多
This paper investigates a class of 2nth-order singular superlinear problems with Strum-Liouville boundary conditions. We obtain a necessary and sufficient condition for the existence of C 2 n- 2 [0, 1] positive soluti...This paper investigates a class of 2nth-order singular superlinear problems with Strum-Liouville boundary conditions. We obtain a necessary and sufficient condition for the existence of C 2 n- 2 [0, 1] positive solutions, and a sufficient condition, a necessary condition for the existence of C 2 n-1 [0, 1] positive solutions. Relations between the positive solutions and the Green’s functions are depicted. The results are used to judge nonexistence or existence of positive solutions for given boundary value problems.展开更多
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singula...This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.展开更多
By mixed monotone method, we establish the existence and uniqueness of positive solutions for fourth-order nonlinear singular Sturm-Liouville problems. The theorems obtained are very general and complement previously ...By mixed monotone method, we establish the existence and uniqueness of positive solutions for fourth-order nonlinear singular Sturm-Liouville problems. The theorems obtained are very general and complement previously known results.展开更多
The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′...The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x) and ξ<SUB> i </SUB>∈ (0, 1) with 0 【 ξ<SUB>1</SUB> 【 ξ<SUB>2</SUB> 【 · · · 【 ξ<SUB> m−2</SUB> 【 1, a <SUB>i </SUB>∈ [0, ∞). h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions is obtained by means of fixed point index theory. Similar conclusions hold for some other m-point boundary value conditions.展开更多
基金Supported by the National Natural Science Foundation of China(11261053) Supported by the Natural Science Foundation of Gansu Province of China(1308RJZA125)
文摘In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.
基金supported by the National Natural Science Foundation of China (Grant No.10771212)the Natural Science Foundation of Jiangsu Province (Grant No.BK2008119)the Natural Science Foundation of the Education Division of Jiangsu Province (Grant No.08KJB110011)
文摘This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
文摘Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, developed by A.C.Lazer, Schauder fixed point theorem and the Leray-Schauder degree theory, respectively.
文摘The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
文摘We establish the existence of positive solutions for singular boundary value problems of coupled systems? The proof relies on Schauder’s fixed point theorem. Some recent results in the literature are generalized and improved.
文摘We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.
文摘In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term of the problem involved also possesses singularities at the nodes. As an application, certain singular integral equation is discussed.
基金Research supported by the National Natural Science Foundation of China (10871116)the Natural Science Foundation of Shandong Province of China (ZR2010AM005)the Doctoral Program Foundation of Education Ministry of China (200804460001)
文摘This paper investigates a class of 2nth-order singular superlinear problems with Strum-Liouville boundary conditions. We obtain a necessary and sufficient condition for the existence of C 2 n- 2 [0, 1] positive solutions, and a sufficient condition, a necessary condition for the existence of C 2 n-1 [0, 1] positive solutions. Relations between the positive solutions and the Green’s functions are depicted. The results are used to judge nonexistence or existence of positive solutions for given boundary value problems.
基金supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.
文摘By mixed monotone method, we establish the existence and uniqueness of positive solutions for fourth-order nonlinear singular Sturm-Liouville problems. The theorems obtained are very general and complement previously known results.
文摘The singular second-order m-point boundary value problem , is considered under some conditions concerning the first eigenvalue of the relevant linear operators, where (Lϕ)(x) = (p(x)ϕ′(x))′ + q(x)ϕ(x) and ξ<SUB> i </SUB>∈ (0, 1) with 0 【 ξ<SUB>1</SUB> 【 ξ<SUB>2</SUB> 【 · · · 【 ξ<SUB> m−2</SUB> 【 1, a <SUB>i </SUB>∈ [0, ∞). h(x) is allowed to be singular at x = 0 and x = 1. The existence of positive solutions is obtained by means of fixed point index theory. Similar conclusions hold for some other m-point boundary value conditions.