This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr...In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.展开更多
Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditi...Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.展开更多
The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast ...The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.展开更多
Some authors employed the method and technique of differential inequalities to obtain fairly general results concerning the existence and asymptotic behavior, as ?-n+ , of the solutions of scalar boundary value proble...Some authors employed the method and technique of differential inequalities to obtain fairly general results concerning the existence and asymptotic behavior, as ?-n+ , of the solutions of scalar boundary value problemsIn this paper, we extend these results to vector boundary value problems, under analogous stability conditions on the solution u = u(t) of the reduced equation 0 = h(t, u) Two types of asymptotic behavior are studied, depending on whether the reduced solution u(f) has or does not have a con tinuous first derivative in (a, b) leading to the phenomena of boundary and angular layers.展开更多
The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The ob...The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.展开更多
The problem of designing a passive filter for nonlinear switched singularly perturbed systems with parameter uncertainties is explored in this paper.Firstly,the multiple-time-scale phenomenon is settled effectively by...The problem of designing a passive filter for nonlinear switched singularly perturbed systems with parameter uncertainties is explored in this paper.Firstly,the multiple-time-scale phenomenon is settled effectively by introducing a singular perturbation parameter in the plant.Secondly,the interval type-2 fuzzy set theory is employed where parameter uncertainties are expressed in membership functions rather than the system matrices.It is worth noting that interval type-2 fuzzy sets of the devised filter are different from the plant,which makes the design of the filter more flexible.Thirdly,the persistent dwell-time switching rule,as a kind of time-dependent switching rules,is used to manage the switchings among nonlinear singularly perturbed subsystems,and this rule is more general than dwell-time and average dwell-time switching rules.Next,sufficient conditions are provided for guaranteeing that the filtering error system is globally uniformly exponentially stable with a passive performance.Furthermore,on the basis of the linear matrix inequalities,the explicit expression of the designed filter can be obtained.Finally,a tunnel diode electronic circuit is rendered as an example to confirm the correctness and the validity of the developed filter.展开更多
This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. Fi...This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.展开更多
In this paper, we study periodic waves in reaction-diffusion systems with limit cycle kinetics and weak diffusion. The results are based on the analysis of a nonlinear partial differential equation which is derived fr...In this paper, we study periodic waves in reaction-diffusion systems with limit cycle kinetics and weak diffusion. The results are based on the analysis of a nonlinear partial differential equation which is derived from singular perturbation techniques. We obtain the first order approximation expression of the dispersion curve for periodic wave trains and then show that in the generic case of limit cycle kinetics there is a one parameter family of target patterns and the rotating spiral waves of Archimedian type exist. Finally, we apply these results to the general λ-ω systems.展开更多
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金the National Natural Science Foundation of China (No. 10671069, 60674046)
文摘In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
基金This project was supported by the National Natural Science Foundation of China (60574023), the Natural Science Foundation of Shandong Province (Z2005G01), and the Natural Science Foundation of Qingdao City (05-1-JC-94).
文摘Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.
基金the National Natural Science Foundation of China(No.60574023,40776051)the Natural Science Foundation of Zhejiang Province(No.Y107232)+1 种基金the Scientific Research Found of Zhejiang Provincial Education Department(No.Y200702660)the 123 Talent Funding Project of China Jiliang University(No.2006RC17)
文摘The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.
文摘Some authors employed the method and technique of differential inequalities to obtain fairly general results concerning the existence and asymptotic behavior, as ?-n+ , of the solutions of scalar boundary value problemsIn this paper, we extend these results to vector boundary value problems, under analogous stability conditions on the solution u = u(t) of the reduced equation 0 = h(t, u) Two types of asymptotic behavior are studied, depending on whether the reduced solution u(f) has or does not have a con tinuous first derivative in (a, b) leading to the phenomena of boundary and angular layers.
基金This work was supported by the National Natural Science Foundation of China (No. 60474078,60304001).
文摘The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.
基金supported by the National Natural Science Foundation of China under under Grant Nos.61873002,61703004,61973199the Natural Science Foundation of Anhui Province under Grant No.1808085QA18。
文摘The problem of designing a passive filter for nonlinear switched singularly perturbed systems with parameter uncertainties is explored in this paper.Firstly,the multiple-time-scale phenomenon is settled effectively by introducing a singular perturbation parameter in the plant.Secondly,the interval type-2 fuzzy set theory is employed where parameter uncertainties are expressed in membership functions rather than the system matrices.It is worth noting that interval type-2 fuzzy sets of the devised filter are different from the plant,which makes the design of the filter more flexible.Thirdly,the persistent dwell-time switching rule,as a kind of time-dependent switching rules,is used to manage the switchings among nonlinear singularly perturbed subsystems,and this rule is more general than dwell-time and average dwell-time switching rules.Next,sufficient conditions are provided for guaranteeing that the filtering error system is globally uniformly exponentially stable with a passive performance.Furthermore,on the basis of the linear matrix inequalities,the explicit expression of the designed filter can be obtained.Finally,a tunnel diode electronic circuit is rendered as an example to confirm the correctness and the validity of the developed filter.
文摘This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.
文摘In this paper, we study periodic waves in reaction-diffusion systems with limit cycle kinetics and weak diffusion. The results are based on the analysis of a nonlinear partial differential equation which is derived from singular perturbation techniques. We obtain the first order approximation expression of the dispersion curve for periodic wave trains and then show that in the generic case of limit cycle kinetics there is a one parameter family of target patterns and the rotating spiral waves of Archimedian type exist. Finally, we apply these results to the general λ-ω systems.