期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Grain Sink Strength Related to Carbon Staying in the Leaves of Hybrid Wheat XN901 被引量:3
1
作者 GONG Yue-hua JI Xiao-hui GAO Jun-feng 《Agricultural Sciences in China》 CSCD 2009年第5期546-555,共10页
XN901 is a K-type three-line hybrid wheat with a high yield potential, and its leaves and stem remaining green during grain maturation, suggesting much assimilate stay in leaves and stem. The grain water content, grai... XN901 is a K-type three-line hybrid wheat with a high yield potential, and its leaves and stem remaining green during grain maturation, suggesting much assimilate stay in leaves and stem. The grain water content, grain volume, carbohydrate content, and enzyme activity of sucose metabolism in the grain, as well as source-sink relationship were studied in order to investigate the physiological reason of the assimilate remaining in leaves and stem at the late stage. The results showed that the hybrid grains had more water and soluble sugar, higher activities of acid invertase and sucrose synthase at the early stage that led to a faster expansion growth, greater grain volume and faster starch synthesis at the early to mid stage of grain development. Also it had a longer period for actively filling. As a result, the grain weight and yield of the hybrid were increased by 14 and 15% respectively compared to that of Shaan 229. Additionally, the biomass of XN901 was 41.7% more than that of control, but its harvest index was 9% lower than Shaan 229. However, its lower activity of sucrose synthase indicated a lower sink activity at the late stage, resulting in a slow rate of filling and starch synthesis. Also, the hybrid wheat XN901 had a large source-sink ratio. It is the main reason for much assimilate remaining in the straw at the late stage and lower harvest index. Strengthening the sink activity and raising the harvest index should be the key means of improving the yield of hybrid wheat. 展开更多
关键词 hybrid wheat STAY-GREEN sink strength sink activity sink size
下载PDF
Carbon allocation in Picea jezoensis:Adaptation strategies of a non-treeline species at its upper elevation limit
2
作者 Renkai Dong Na Li +4 位作者 Mai-He Li Yu Cong Haibo Du Decai Gao Hong S.He 《Forest Ecosystems》 SCIE CSCD 2024年第3期347-357,共11页
Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the pre... Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone.The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species,Picea jezoensis,and the carbon allocation strategies of the species on Changbai Mountain.We employed the^(13)C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions(tree species at its upper elevation limit(TSAUE,1,700 m a.s.l.)under treeline ecotone;tree species at a lower elevation position(TSALE,1,400 m a.s.l.).We analyzed^(13)C and the non-structural carbohydrate(NSC)concentrations in various tissues following labeling.Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE.There was a pronounced increase inδ^(13)C allocation to belowground components(roots,soil,soil respiration)in TSAUE compared to TSALE.Furthermore,the C flow rate within the plant-soil-atmosphere system was faster,and the C residence time in the plant was shorter in TSAUE.The trends indicate enhanced C sink activity in belowground tissues in TSAUE,with newly assimilated C being preferentially directed there,suggesting a more conservative C allocation strategy by P.jezoensis at higher elevations under harsher environments.Such a strategy,prioritizing C storage in roots,likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season,leading to reduced growth of TSAUE compared to TSALE.The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees,and enhances our understanding of how non-treeline species might respond to ongoing climate change. 展开更多
关键词 ^(13)C pulse labeling Carbon distribution Non-structural carbohydrates(NSC) Non-treeline species sink activity Stressful environments Upper elevation limit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部