DTA, thermal expansion, XRD, and SEM were used to evaluate the effect of quenching temperature on the mechanical properties and microstructure of a novel sintered steel Fe-6Co-1Ni-5Cr-5Mo-1C. Lattice parameters and th...DTA, thermal expansion, XRD, and SEM were used to evaluate the effect of quenching temperature on the mechanical properties and microstructure of a novel sintered steel Fe-6Co-1Ni-5Cr-5Mo-1C. Lattice parameters and the mass fraction of carbon dissolved in the matrix of the steel quenched were investigated. It is discovered that the hardness of the steel increases with quenching temperature in the range of 840-900℃ and remains constant in the range of 900 to 1100℃. It decreases rapidly when the temperature is higher than 1100℃. The mass fraction of carbon dissolved in the matrix of the steel quenched at 840℃ is 0.38, but when the quenching temperature is increased to 1150℃, it increases to 0.98. The carbides formed during sintering are still present at grain boundaries and in the matrix of the steel quenched at low quenching temperatures, such as 840℃. When the quenching temperature is increased to 1150℃, most of the carbides at grain boundaries are dissolved with just a small amount of spherical M23C6 existing in the matrix of the quenched steel.展开更多
In recent years, spark plasma sintering technique(SPS) has been a focus in the field of material preparation due to its advantages. SPS technique is first introduced for preparation of high quality NdFeB magnets. The ...In recent years, spark plasma sintering technique(SPS) has been a focus in the field of material preparation due to its advantages. SPS technique is first introduced for preparation of high quality NdFeB magnets. The effects of heat treatment process on the magnetic properties of SPS NdFeB magnet were investigated. Meanwhile, the effects of heat treatment process on the microstructure, tropism and dimensional precision of the SPS NdFeB magnets were also studied. The high quality NdFeB magnets with fine grains were prepared under proper heat treatment process. The results show that the magnetic properties of SPS NdFeB can be further improved through proper heat treatment process. Meanwhile, the experiment also demonstrates that it is feasible to prepare near net shape NdFeB magnets with fine grains and high magnetic property by spark plasma sintering.展开更多
The limestone-gypsum flue gas desulfurization (FGD) process has become the most widespread process in the world for sulfur removal. The swirl-jet-absorbing wet limestone-gypsum sintering FGD technology was developed...The limestone-gypsum flue gas desulfurization (FGD) process has become the most widespread process in the world for sulfur removal. The swirl-jet-absorbing wet limestone-gypsum sintering FGD technology was developed for sintering flue gas desulfurization,and this process produces volumes of wastewater with various contaminants that requires treatment before disposal or reuse. In this study, the wastewater quality from three different sintering FGD systems at Baosteel Group was investigated and compared with wastewater from power plant FGD. A treatment process was proposed which is suitable for sintering FGD wastewater. After treatment with a neutralization, coagulation and sedimentation process, heavy metals in the sintering FGD wastewater were reduced to a level meeting the relevant emission standards ,but the pH and ammonia concentration were too high, and a further treatment process was needed. Due to certain similarities and complementarities between sintering FGD wastewater and coking wastewater, it is entirely feasible to mix the pretreated sintering FGD wastewater into a biological coking wastewater treatment system. This study indicates that it is entirely feasible to mix pretreated sintering FGD wastewater into the biological treatment systems used for coking wastewater from the iron and steel industries.展开更多
Sinter strength is dependent not only on the self-intensity of the residual rude and bonding phase but also on the bonding degree between them. The infiltration behavior of sintering liquid on nuclei ores influences t...Sinter strength is dependent not only on the self-intensity of the residual rude and bonding phase but also on the bonding degree between them. The infiltration behavior of sintering liquid on nuclei ores influences the bonding degree, which ultimately determines the sinter strength. Infiltration tests were conducted using micro-sinter equipment. The infiltration area index of original liquid(IAO), infiltration volume index of secondary liquid(IVS), and sinter body bonding strength(SBS) were proposed to study the melt infiltration behavior. The results show that the IVS first increases and then decreases with increasing TiO2 content in adhering fines, whereas the IAO exhibits the opposite behavior. Compared with the original liquid, the secondary liquid shows lower porosity, smaller pores, and more uniform distribution. The SBS increases first and then decreases with increasing IAO and TiO2 content, and reaches a maximum when the IAO and TiO2 contents are approximately 0.5 and 2.0wt%, respectively. The SBS first increases and then tends to be stable with increasing IVS. The TiO2 content is suggested to be controlled to approximately 2.0wt% in low-titanium ore sintering.展开更多
Pb ( Mn1/3Sb2/3 ) x ( Zn1/3Nb2/3) y ( Zr0.535 Ti0.465 ),1-x-yO3 ( PMZN) piezoelectric ceramics were fabricated, The effects of sintering temperature and heat-treatment time on properties wen discussed, the optimum pre...Pb ( Mn1/3Sb2/3 ) x ( Zn1/3Nb2/3) y ( Zr0.535 Ti0.465 ),1-x-yO3 ( PMZN) piezoelectric ceramics were fabricated, The effects of sintering temperature and heat-treatment time on properties wen discussed, the optimum preparation technology parameters were obtained. In this case, the ceramics have the highest electromechanical coupling coefficients and mechanical quality factor and the least dielectric loss. It is revealed that the PMZN piezo-ceramics material can be utilized for high-power ultrasound transducers.展开更多
The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to...The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The micro-structure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.展开更多
A Cao-Mgo-Al2O3-SiO2 quaternary system was established with the main crystal phase design based on Diopside, and the effect of once-through sintering heat treatment on microstructure of iron railings glass ceramics wa...A Cao-Mgo-Al2O3-SiO2 quaternary system was established with the main crystal phase design based on Diopside, and the effect of once-through sintering heat treatment on microstructure of iron railings glass ceramics was studied by using DTA, SEM along with measurement of microhardness and volume density. The experimental results show that, when the total amount of FeO and Fe2O3 exceeds 10wt%, a large number of fine nuclei are produced in the annealing process, and the phenomenon of nucleus resorption happens during the process of nucleation heat treatment, which is unfavorable for preparing iron tailings glass ceramics through once-through sintering method. When the annealing temperature from 1250 ℃ to 830 ℃, setting crystallization time for 4h, without heat treatment, crystals are well grown with arrangement and interlocking in glass phase. At 830 ℃ the crystals are well developed, well distributed and of good size; with crystallization time of 4 h the crystals with radial shape have high content and regular arrangement.展开更多
A type of polymer-coated Al2O3/ZrO2/TiC ceramic powder was prepared. The laser sintering mechanism of polymer-coated Al2O3/ZrO2/TiC powder was investigated by studying the dynamic laser sintering process. It is found ...A type of polymer-coated Al2O3/ZrO2/TiC ceramic powder was prepared. The laser sintering mechanism of polymer-coated Al2O3/ZrO2/TiC powder was investigated by studying the dynamic laser sintering process. It is found that the mechanism is viscous flow when the sintering temperature is between 80 ℃ and 120 ℃, and it is melting/solidification when the temperature is above 120 ℃. The process parameters of selective laser sintering were optimized by using ortho-design method. The results show that the optimal parameters include laser power of 14 W, scanning velocity of 1 400 mm/s, preheating temperature of 50 ℃ and powder depth of 0.15 mm. A two-step post-treatment process is adopted to improve the mechanical properties of laser sintered part, which includes polymer debinding and high temperature sintering. After vacuum sintering for 2 h at 1 650 ℃, the bending strength and fracture toughness of Al2O3/ZrO2/TiC ceramic part reach 358 MPa and 6.9 MPa·m1/2, respectively.展开更多
文摘DTA, thermal expansion, XRD, and SEM were used to evaluate the effect of quenching temperature on the mechanical properties and microstructure of a novel sintered steel Fe-6Co-1Ni-5Cr-5Mo-1C. Lattice parameters and the mass fraction of carbon dissolved in the matrix of the steel quenched were investigated. It is discovered that the hardness of the steel increases with quenching temperature in the range of 840-900℃ and remains constant in the range of 900 to 1100℃. It decreases rapidly when the temperature is higher than 1100℃. The mass fraction of carbon dissolved in the matrix of the steel quenched at 840℃ is 0.38, but when the quenching temperature is increased to 1150℃, it increases to 0.98. The carbides formed during sintering are still present at grain boundaries and in the matrix of the steel quenched at low quenching temperatures, such as 840℃. When the quenching temperature is increased to 1150℃, most of the carbides at grain boundaries are dissolved with just a small amount of spherical M23C6 existing in the matrix of the quenched steel.
文摘In recent years, spark plasma sintering technique(SPS) has been a focus in the field of material preparation due to its advantages. SPS technique is first introduced for preparation of high quality NdFeB magnets. The effects of heat treatment process on the magnetic properties of SPS NdFeB magnet were investigated. Meanwhile, the effects of heat treatment process on the microstructure, tropism and dimensional precision of the SPS NdFeB magnets were also studied. The high quality NdFeB magnets with fine grains were prepared under proper heat treatment process. The results show that the magnetic properties of SPS NdFeB can be further improved through proper heat treatment process. Meanwhile, the experiment also demonstrates that it is feasible to prepare near net shape NdFeB magnets with fine grains and high magnetic property by spark plasma sintering.
文摘The limestone-gypsum flue gas desulfurization (FGD) process has become the most widespread process in the world for sulfur removal. The swirl-jet-absorbing wet limestone-gypsum sintering FGD technology was developed for sintering flue gas desulfurization,and this process produces volumes of wastewater with various contaminants that requires treatment before disposal or reuse. In this study, the wastewater quality from three different sintering FGD systems at Baosteel Group was investigated and compared with wastewater from power plant FGD. A treatment process was proposed which is suitable for sintering FGD wastewater. After treatment with a neutralization, coagulation and sedimentation process, heavy metals in the sintering FGD wastewater were reduced to a level meeting the relevant emission standards ,but the pH and ammonia concentration were too high, and a further treatment process was needed. Due to certain similarities and complementarities between sintering FGD wastewater and coking wastewater, it is entirely feasible to mix the pretreated sintering FGD wastewater into a biological coking wastewater treatment system. This study indicates that it is entirely feasible to mix pretreated sintering FGD wastewater into the biological treatment systems used for coking wastewater from the iron and steel industries.
基金financially supported by the Major State Basic Research Development Program of China (No. 2012CB720401)the Natural Science Foundation of China and Baosteel (No. 51134008)the National Natural Science Foundation of China (No. U1260202)
文摘Sinter strength is dependent not only on the self-intensity of the residual rude and bonding phase but also on the bonding degree between them. The infiltration behavior of sintering liquid on nuclei ores influences the bonding degree, which ultimately determines the sinter strength. Infiltration tests were conducted using micro-sinter equipment. The infiltration area index of original liquid(IAO), infiltration volume index of secondary liquid(IVS), and sinter body bonding strength(SBS) were proposed to study the melt infiltration behavior. The results show that the IVS first increases and then decreases with increasing TiO2 content in adhering fines, whereas the IAO exhibits the opposite behavior. Compared with the original liquid, the secondary liquid shows lower porosity, smaller pores, and more uniform distribution. The SBS increases first and then decreases with increasing IAO and TiO2 content, and reaches a maximum when the IAO and TiO2 contents are approximately 0.5 and 2.0wt%, respectively. The SBS first increases and then tends to be stable with increasing IVS. The TiO2 content is suggested to be controlled to approximately 2.0wt% in low-titanium ore sintering.
文摘Pb ( Mn1/3Sb2/3 ) x ( Zn1/3Nb2/3) y ( Zr0.535 Ti0.465 ),1-x-yO3 ( PMZN) piezoelectric ceramics were fabricated, The effects of sintering temperature and heat-treatment time on properties wen discussed, the optimum preparation technology parameters were obtained. In this case, the ceramics have the highest electromechanical coupling coefficients and mechanical quality factor and the least dielectric loss. It is revealed that the PMZN piezo-ceramics material can be utilized for high-power ultrasound transducers.
文摘The characterization of feldspar for electric porcelain and the behaviour of these materials after heating at 1230°C were studied. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to identify the present phases and the densification level. Feldspar sand was treated by flotation. The floated feldspar is constituted by microcline, quartz, and minor amounts of albite. The micro-structure of sintered feldspar at 1230°C is essentially vitreous with open microporosities. The dielectrical properties of composites were characterized by using the induced courant method (ICM), which indicates that the charge trapping capacity depends on the mineralogical and chemical composition of feldspar.
基金Funded by State Administration of Foreign Experts Affairs and the Younger Natural Science Foundation of Liaoning(wzj-2002, 2005229001)
文摘A Cao-Mgo-Al2O3-SiO2 quaternary system was established with the main crystal phase design based on Diopside, and the effect of once-through sintering heat treatment on microstructure of iron railings glass ceramics was studied by using DTA, SEM along with measurement of microhardness and volume density. The experimental results show that, when the total amount of FeO and Fe2O3 exceeds 10wt%, a large number of fine nuclei are produced in the annealing process, and the phenomenon of nucleus resorption happens during the process of nucleation heat treatment, which is unfavorable for preparing iron tailings glass ceramics through once-through sintering method. When the annealing temperature from 1250 ℃ to 830 ℃, setting crystallization time for 4h, without heat treatment, crystals are well grown with arrangement and interlocking in glass phase. At 830 ℃ the crystals are well developed, well distributed and of good size; with crystallization time of 4 h the crystals with radial shape have high content and regular arrangement.
基金Project(03022) supported by the Key Science Research Program of Education Ministry of China
文摘A type of polymer-coated Al2O3/ZrO2/TiC ceramic powder was prepared. The laser sintering mechanism of polymer-coated Al2O3/ZrO2/TiC powder was investigated by studying the dynamic laser sintering process. It is found that the mechanism is viscous flow when the sintering temperature is between 80 ℃ and 120 ℃, and it is melting/solidification when the temperature is above 120 ℃. The process parameters of selective laser sintering were optimized by using ortho-design method. The results show that the optimal parameters include laser power of 14 W, scanning velocity of 1 400 mm/s, preheating temperature of 50 ℃ and powder depth of 0.15 mm. A two-step post-treatment process is adopted to improve the mechanical properties of laser sintered part, which includes polymer debinding and high temperature sintering. After vacuum sintering for 2 h at 1 650 ℃, the bending strength and fracture toughness of Al2O3/ZrO2/TiC ceramic part reach 358 MPa and 6.9 MPa·m1/2, respectively.