Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) proces...Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.展开更多
A new kind of process sintering process is dealt with manufacturing hammers of the hammer mill. Metallurgical products and single factor parameters are systematically studied in this paper. One element experiments a...A new kind of process sintering process is dealt with manufacturing hammers of the hammer mill. Metallurgical products and single factor parameters are systematically studied in this paper. One element experiments and orthogonal design experiments are carried out to achieve optimized parameters. Experimental results provide important theoretical guidance and experimental data for its further application.展开更多
To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital d...To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.展开更多
The sinter quality is important for its performance in a blast furnace,and optimizing ore matching is a main way to ensure the quality and yield of sinter ore and to reduce the cost of ore matching.The research on opt...The sinter quality is important for its performance in a blast furnace,and optimizing ore matching is a main way to ensure the quality and yield of sinter ore and to reduce the cost of ore matching.The research on optimizing ore matching for a 550 m2sintering machine in Shougang Jingtang was carried out in this paper. Firstly,based on the condition of iron ore resourse in Shougang,sintering properties of various ores,especially the high temperature properties were researched,and basic structure of ore matching was determined according to the mutual complementary properties of assimilation and liquid phase fluidity among Australia ore,Brazilian ore and domestic concentrates,that was Australian ore(50%-60%) + Brazilian ore(40%-30%) + domestic concentrates(about 10%).Secondly,9 groups of ore matching schemes were designed and sintering pot tests were carried out,and then the starting scheme of the 550 m2sintering machine was obtained:ore from southern Brazil (20%) +ore from northern Brazil(10%) + semi-limonite(20%) + limonite ore(35%) + domestic concentrates (15%).Thirdly,experiment of optimizing parameters of optimizing basicity,lime ratio,water addition and bed depth were carried out,and 9 groups of ore matching schemes were designed.The results showed that parameters fit for Jingtang currently are as follows:binary basicity is 1.9 - 1.95,lime ratio and water addition is 5%and 7.0% respectively;sintering bed should increase to 800 mm gradually.At last,Jingtang sintering plant was put into production successfully and yields stably,with the bed depth of 800 mm and advanced sintering indexes.展开更多
In variational methods,coupled parameter optimization(CPO) often needs a long minimization time window(MTW) to fully incorporate observational information,but the optimal MTW somehow depends on the model nonlinearity....In variational methods,coupled parameter optimization(CPO) often needs a long minimization time window(MTW) to fully incorporate observational information,but the optimal MTW somehow depends on the model nonlinearity.The analytical four-dimensional ensemble-variational(A-4DEnVar) considers model nonlinearity well and avoids adjoint model.It can theoretically be applied to CPO.To verify the feasibility and the ability of the A-4DEnVar in CPO,“twin” experiments based on A-4DEnVar CPO are conducted for the first time with the comparison of four-dimensional variational(4D-Var).Two algorithms use the same background error covariance matrix and optimization algorithm to control variates.The experiments are based on a simple coupled oceanatmosphere model,in which the atmospheric part is the highly nonlinear Lorenz-63 model,and the oceanic part is a slab ocean model.The results show that both A-4DEnVar and 4D-Var can effectively reduce the error of state variables through CPO.Besides,two methods produce almost the same results in most cases when the MTW is less than 560 time steps.The results are similar when the MTW is larger than 560 time steps and less than 880 time steps.The largest MTW of 4 D-Var and A-4DEnVar are 1 200 time steps.Moreover,A-4DEnVar is not sensitive to ensemble size when the MTW is less than 720 time steps.A-4DEnVar obtains satisfactory results in the case of highly nonlinear model and long MTW,suggesting that it has the potential to be widely applied to realistic CPO.展开更多
In order to improve the recovery and utilization rates of sinter waste heat effectively,the organic Rankine cycle(ORC)system with subcritical cycle was designed to recover the low-temperature sinter cooling flue gas w...In order to improve the recovery and utilization rates of sinter waste heat effectively,the organic Rankine cycle(ORC)system with subcritical cycle was designed to recover the low-temperature sinter cooling flue gas waste heat in an annular cooler for power generation.The thermodynamic,economic and multi-objective optimization models of ORC system were established,and R600a was selected as the ORC working medium.Subsequently,the variations in system thermodynamic performance and economic performance with the ORC thermal parameters were discussed in detail,and the optimal ORC thermal parameters were determined.The results show that the system net output power increases with increasing the evaporation temperature and decreasing the condensation temperature and increases first and then,decreases with the increase in superheat degree for a given flue gas outlet temperature in the evaporator,while the heat transfer area per unit net output power appears different variation trends in various ranges of flue gas outlet temperature.Taking the sinter cooling flue gas waste heat of 160℃as the ORC heat source,the optimal thermal parameters of ORC system were the flue gas outlet temperature of 90℃,the evaporation temperature of 95℃,the superheat degree of 10℃,and the condensation temperature of 28℃.展开更多
文摘Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.
文摘A new kind of process sintering process is dealt with manufacturing hammers of the hammer mill. Metallurgical products and single factor parameters are systematically studied in this paper. One element experiments and orthogonal design experiments are carried out to achieve optimized parameters. Experimental results provide important theoretical guidance and experimental data for its further application.
基金Supported by the National Natural Science Foundation of China(50975141)the Aviation Science Fund(20091652018,2010352005)the National Science and Technology Major Project of the Ministry of Science and Technology of China(2012ZX04003031-4)
文摘To optimize cutting control parameters and provide scientific evidence for controlling cutting forces,cutting force modeling and cutting control parameter optimization are researched with one tool adopted to orbital drill holes in aluminum alloy 6061.Firstly,four cutting control parameters(tool rotation speed,tool revolution speed,axial feeding pitch and tool revolution radius)and affecting cutting forces are identified after orbital drilling kinematics analysis.Secondly,hybrid level orthogonal experiment method is utilized in modeling experiment.By nonlinear regression analysis,two quadratic prediction models for axial and radial forces are established,where the above four control parameters are used as input variables.Then,model accuracy and cutting control parameters are analyzed.Upon axial and radial forces models,two optimal combinations of cutting control parameters are obtained for processing a13mm hole,corresponding to the minimum axial force and the radial force respectively.Finally,each optimal combination is applied in verification experiment.The verification experiment results of cutting force are in good agreement with prediction model,which confirms accracy of the research method in practical production.
文摘The sinter quality is important for its performance in a blast furnace,and optimizing ore matching is a main way to ensure the quality and yield of sinter ore and to reduce the cost of ore matching.The research on optimizing ore matching for a 550 m2sintering machine in Shougang Jingtang was carried out in this paper. Firstly,based on the condition of iron ore resourse in Shougang,sintering properties of various ores,especially the high temperature properties were researched,and basic structure of ore matching was determined according to the mutual complementary properties of assimilation and liquid phase fluidity among Australia ore,Brazilian ore and domestic concentrates,that was Australian ore(50%-60%) + Brazilian ore(40%-30%) + domestic concentrates(about 10%).Secondly,9 groups of ore matching schemes were designed and sintering pot tests were carried out,and then the starting scheme of the 550 m2sintering machine was obtained:ore from southern Brazil (20%) +ore from northern Brazil(10%) + semi-limonite(20%) + limonite ore(35%) + domestic concentrates (15%).Thirdly,experiment of optimizing parameters of optimizing basicity,lime ratio,water addition and bed depth were carried out,and 9 groups of ore matching schemes were designed.The results showed that parameters fit for Jingtang currently are as follows:binary basicity is 1.9 - 1.95,lime ratio and water addition is 5%and 7.0% respectively;sintering bed should increase to 800 mm gradually.At last,Jingtang sintering plant was put into production successfully and yields stably,with the bed depth of 800 mm and advanced sintering indexes.
基金The National Key Research and Development Program under contract No.2021YFC3101501the National Natural Science Foundation of China under contract No.41876014。
文摘In variational methods,coupled parameter optimization(CPO) often needs a long minimization time window(MTW) to fully incorporate observational information,but the optimal MTW somehow depends on the model nonlinearity.The analytical four-dimensional ensemble-variational(A-4DEnVar) considers model nonlinearity well and avoids adjoint model.It can theoretically be applied to CPO.To verify the feasibility and the ability of the A-4DEnVar in CPO,“twin” experiments based on A-4DEnVar CPO are conducted for the first time with the comparison of four-dimensional variational(4D-Var).Two algorithms use the same background error covariance matrix and optimization algorithm to control variates.The experiments are based on a simple coupled oceanatmosphere model,in which the atmospheric part is the highly nonlinear Lorenz-63 model,and the oceanic part is a slab ocean model.The results show that both A-4DEnVar and 4D-Var can effectively reduce the error of state variables through CPO.Besides,two methods produce almost the same results in most cases when the MTW is less than 560 time steps.The results are similar when the MTW is larger than 560 time steps and less than 880 time steps.The largest MTW of 4 D-Var and A-4DEnVar are 1 200 time steps.Moreover,A-4DEnVar is not sensitive to ensemble size when the MTW is less than 720 time steps.A-4DEnVar obtains satisfactory results in the case of highly nonlinear model and long MTW,suggesting that it has the potential to be widely applied to realistic CPO.
基金support for this work provided by the National Natural Science Foundation of China(51974087 and 51904074)Anhui Provincial Natural Science Foundation(1908085QE203)+1 种基金Natural Science Research Foundation of Anhui Province University(2022AH050262)Science Research Foundation of Anhui Jianzhu University(2020QDZ02).
文摘In order to improve the recovery and utilization rates of sinter waste heat effectively,the organic Rankine cycle(ORC)system with subcritical cycle was designed to recover the low-temperature sinter cooling flue gas waste heat in an annular cooler for power generation.The thermodynamic,economic and multi-objective optimization models of ORC system were established,and R600a was selected as the ORC working medium.Subsequently,the variations in system thermodynamic performance and economic performance with the ORC thermal parameters were discussed in detail,and the optimal ORC thermal parameters were determined.The results show that the system net output power increases with increasing the evaporation temperature and decreasing the condensation temperature and increases first and then,decreases with the increase in superheat degree for a given flue gas outlet temperature in the evaporator,while the heat transfer area per unit net output power appears different variation trends in various ranges of flue gas outlet temperature.Taking the sinter cooling flue gas waste heat of 160℃as the ORC heat source,the optimal thermal parameters of ORC system were the flue gas outlet temperature of 90℃,the evaporation temperature of 95℃,the superheat degree of 10℃,and the condensation temperature of 28℃.