Powder metallurgy technique was applied to prepare rare earth giant magnetostrictive materials. This preparation process consists of casted Tb0.30Dy0.70 Fe1.80 alloy, in magnetic atmosphere. which is pulverized by bal...Powder metallurgy technique was applied to prepare rare earth giant magnetostrictive materials. This preparation process consists of casted Tb0.30Dy0.70 Fe1.80 alloy, in magnetic atmosphere. which is pulverized by ball mill, aligned field, compacted and sintered in inertial The experimental results indicate that when the magnetic field is 240 kA ·m^-1, the sample with particle size less than 0. 147 mm being compacted in magnetic field exhibits 1613 × 10^-3 magnetostriction under a compressive pre-stress 8.0 MPa after being sintered at 1200 ℃ for 2 h and annealed at 950 ℃ for 24 h.展开更多
文摘Powder metallurgy technique was applied to prepare rare earth giant magnetostrictive materials. This preparation process consists of casted Tb0.30Dy0.70 Fe1.80 alloy, in magnetic atmosphere. which is pulverized by ball mill, aligned field, compacted and sintered in inertial The experimental results indicate that when the magnetic field is 240 kA ·m^-1, the sample with particle size less than 0. 147 mm being compacted in magnetic field exhibits 1613 × 10^-3 magnetostriction under a compressive pre-stress 8.0 MPa after being sintered at 1200 ℃ for 2 h and annealed at 950 ℃ for 24 h.