An analysis approach considering gas-solids hydrodynamics,reaction kinetics and reacting species nonuniformity together in a dual-reactor system is presented for better understanding its mass and energy balance.It was...An analysis approach considering gas-solids hydrodynamics,reaction kinetics and reacting species nonuniformity together in a dual-reactor system is presented for better understanding its mass and energy balance.It was achieved by a 3-dimensional comprehensive hydrodynamics and reaction model for the dual-reactor system,which was developed from the successfully verified 3-dimensional comprehensive combustion model for one circulating fluidized bed(CFB)system(Xu and Cheng,2019).The developed model and analysis approach was successfully used on a 1 MW circulating fluidized bed–bubbling fluidized bed(CFB-BFB)dual-reactor system.Results showed the sensible and chemical energy between two reactors as well as the energy distributions in each reactor were balanced and they agreed well with the experimental measurements.The analysis approach indicated energy balance had a close relationship with the mass transfer in the CFB-BFB dual-reactor system.It may be applied in a design and operation optimization for a dual-reactor system.展开更多
AWS data during 2014 collected at PANDA-N station, on the East Antarctic Plateau, are analysed. Net Short Wave Radiation(QSWR), net Long Wave Radiation(QLWR), sensible(QH), latent(QL) and subsurface or ground(QG) heat...AWS data during 2014 collected at PANDA-N station, on the East Antarctic Plateau, are analysed. Net Short Wave Radiation(QSWR), net Long Wave Radiation(QLWR), sensible(QH), latent(QL) and subsurface or ground(QG) heat fluxes are computed. Annual averages for QSWR, QLWR, QH, QL and QG of 19.65,-49.16, 26.40,-0.77 and 3.86 W·m-2 were derived based on an albedo value of 0.8. QSWR and QH are the major sources of heat gain to the surface and QLWR is the major component of heat loss from the surface. An i terative method is used to estimate surface temperature in this paper;surface temperature of snow/ice is gradually increased or decreased, thereby changing longwave radiation, sensible, latent and subsurface heat fluxes, so that the net energy balance becomes zero. Mass loss due to sublimation at PANDA-N station for 2014 is estimated to be 12.18 mm w.e.·a-1;and mass gain due to water vapour deposition is estimated to be 3.58 mm w.e.·a-1. Thus the net mass loss due to sublimation/deposition is 8.6 mm w.e.·a-1. This study computes surface energy fluxes using a model, instead of direct measurements. Also there are missing data especially for wind speed, though 2 m air temperature data is almost continuously available throughout the year. The uncertainties of albedo, wind speed and turbulent fluxes cause the most probable error in monthly values of QLWR, QH, QL, QG and surface temperature of about ±4%, ±20%, ±50%, ±11% and ±0.74 K respectively.展开更多
We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and ClimateExperiment (GRACE) twi...We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and ClimateExperiment (GRACE) twin-satellite mission. We find a total mass loss trend of the HMA glaciers at a rateof –22.17 (±1.96) Gt/a. The largest mass loss rates of –7.02 (±0.94) and –6.73 (±0.78) Gt/a are found forthe glaciers in Nyainqentanglha Mountains and Eastern Himalayas, respectively. Although most glaciers inthe HMA area show a mass loss, we find a small glacier mass gain of 1.19 (±0.55) and 0.77 (±0.37) Gt/a inKarakoram Mountains and Western Kunlun Mountains, respectively. There is also a nearly zero massbalance in Pamirs. Our estimates of glacier mass change trends confirm previous results from the analysisof altimetry data of the ICESat (ICE, Cloud and Land Elevation Satellite) and ASTER (AdvancedSpaceborne Thermal Emission and Reflection Radiometer) DEM (Digital Elevation Model) satellites inmost of the selected glacier areas. However, they largely differ to previous GRACE-based studies which weattribute to our different post-processing techniques of the newer GRACE data. In addition, we explicitlyshow regional mass change features for both the interannual glacier mass changes and the 14-a averagedseasonal glacier mass changes. These changes can be explained in parts by total net precipitation (netsnowfall and net rainfall) and net snowfall, but mostly by total net radiation energy when compared to datafrom the ERA5-Land meteorological reanalysis. Moreover, nearly all the non-trend interannual masschanges and most seasonal mass changes can be explained by the total net radiation energy data. The massloss trends could be partly related to a heat effect due to increased net rainfall in Tianshan Mountains, QilianMountains, Nyainqentanglha Mountains and Eastern Himalayas. Our new results for the glacier mass changein this study could help improve the understanding of glacier variation in the HMA area and contribute tothe study of global change. They could also serve the utilization of water resources there and in neighboringareas.展开更多
Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northe...Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.展开更多
The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration an...The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration and aluminum electrolyte temperature was explored through the modeling of heat and mass transfer processes in industrial pre-baked aluminum reduction cells. A coupled heat/mass-balance model was derived theoretically from the mass and energy balance of an electrolysis cell, and then was simplified properly into a practical expression. The model demonstrates that if environmental temperature and Al2O3 concentration keep constant, the excess AlF3 concentration decreases with the aluminum electrolyte temperature linearly and its decrease rate is dependent on the heat transfer property of aluminum electrolyte, side wall and cell shell. Secondly, experiments were conducted on site with two industrial cells in an aluminum electrolysis plant. Excess AlF3 concentration and aluminum electrolyte temperature were obtained simultaneously together with other parameters such as Al2O3, CaF2, MgF2 and LiF concentrations. Results show that the maximum absolute error between the tested value and the calculated value of excess AlF3 concentration using the proposed model is less than 2%. This reveals that the coupled heat/mass-balance model can appropriately characterize the correlation between excess AlF3 concentration and aluminum electrolyte temperature with good accuracy and practicability.展开更多
Based on the field observations on Qiyi Glacier during the warm season of 2007,using a digital elevation model(DEM,15 m resolution),we developed a distributed surface energy-and mass-balance model with an hourly resol...Based on the field observations on Qiyi Glacier during the warm season of 2007,using a digital elevation model(DEM,15 m resolution),we developed a distributed surface energy-and mass-balance model with an hourly resolution.The model described the effect of topography on shortwave solar radiation,and used a new parameterization for glacier albedo.The model was applied to Qiyi Glacier in the Qilian Mountain,China,for the period 20:00 30 June to 12:00 10 October 2007,to simulate the firn-line changes,the temporal and spatial variations of mass balance,and the glacial meltwater runoff.The results indicated that the patterns of altitudinal profile of glacier mass-balance were affected mainly by the altitudinal profile of albedo,and the status of the glacier mass balance was influenced directly by the values of albedo.The parameter sensitivity test showed that the model was sensitive to the air temperature lapse rate and precipitation gradient,and also sensitive to the threshold temperature for solid/liquid precipitation.Furthermore,the climate sensitivity test showed that the mass balance was more sensitive to air temperature than precipitation,and the response of mass balance to air temperature change was nonlinear while the response to precipitation change linearly.The negative mass balance trend of the glacier can not be reversed when precipitation increases by 20%and meanwhile air temperature rises by 1°C.展开更多
In this article, the energy balance method is used to retrieve thermospheric mass density from CHAMP satellite precise orbit determination(POD) data during 2007–2009. The retrieved thermospheric mass densities are co...In this article, the energy balance method is used to retrieve thermospheric mass density from CHAMP satellite precise orbit determination(POD) data during 2007–2009. The retrieved thermospheric mass densities are compared with those from accelerometer data and an empirical model. The main conclusions are as follows:(1) Thermospheric mass density can be retrieved from POD data by the energy balance and semi-major axis decay methods, whose results are consistent.(2) The accuracy of the retrieved densities depends on the integration time period, and the optimal period for CHAMP density retrieval from POD data is about 20 minutes.(3) The energy balance method can be used to calibrate accelerometer data.(4) The accuracy of retrieving thermospheric density from POD data varies with satellite altitude and local time.展开更多
The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far.In the present study,using the snow cover model SNOWPACK,the effect of geotextile cover on the ene...The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far.In the present study,using the snow cover model SNOWPACK,the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No.1(Chinese Tien Shan)was simulated between July 12,2022 and August 31,2022.The mass changes and the energy fluxes with and without material cover were compared.The results indicated that the geotextile covering reduced glacier ablation by approximately 68%compared to the ablation in the uncovered regions.The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%.Thermal insulation of the geotextile reduced the sensible heat flux by 15%.In addition,the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux.This cooling effect reduced the energy available for ablation by 20%.Consequently,only 37%of the energy was used for melting compared to that used in the uncovered regions(67%).Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%,and a further increase in the thickness of the geotextile cover led to little improvements.A higher temperature and greater wind speed increased glacier ablation,although their effects were small.When the precipitation was set to zero,it led to a significantly increased melt.Overall,the geotextile effectively protected the glacier tongue from rapid melting,and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.展开更多
根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型...根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型包含鱼类、虾类、蟹类、头足类、浮游动物、浮游植物、底栖动物、碎屑等17个功能群,基本覆盖了能量流动的途径。分析结果表明,2006年秋季长江口及毗邻水域生态系统的总生物量、系统总流量比2000年秋季有所下降,碎屑链的重要性略有降低;由于低营养级层次渔获物数量的增加,渔获物平均营养级有所下降。2个时期长江口及毗邻水域生态系统的再循环率较低,仍有较高的剩余生产量有待利用,均处于不成熟的发育期。展开更多
基金The authors are grateful for the financial support of the National Key Research and Development Program of China(2018YFB0605403).
文摘An analysis approach considering gas-solids hydrodynamics,reaction kinetics and reacting species nonuniformity together in a dual-reactor system is presented for better understanding its mass and energy balance.It was achieved by a 3-dimensional comprehensive hydrodynamics and reaction model for the dual-reactor system,which was developed from the successfully verified 3-dimensional comprehensive combustion model for one circulating fluidized bed(CFB)system(Xu and Cheng,2019).The developed model and analysis approach was successfully used on a 1 MW circulating fluidized bed–bubbling fluidized bed(CFB-BFB)dual-reactor system.Results showed the sensible and chemical energy between two reactors as well as the energy distributions in each reactor were balanced and they agreed well with the experimental measurements.The analysis approach indicated energy balance had a close relationship with the mass transfer in the CFB-BFB dual-reactor system.It may be applied in a design and operation optimization for a dual-reactor system.
基金funded by the Ministry of Science and Technology of the People’s Republic of China (MOST, Grant no. 2016YFC1400303)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant no. XDA20100300)the Basic Scientific Research and Operation Foundation of CAMS (Grant no. 2018Z001)
文摘AWS data during 2014 collected at PANDA-N station, on the East Antarctic Plateau, are analysed. Net Short Wave Radiation(QSWR), net Long Wave Radiation(QLWR), sensible(QH), latent(QL) and subsurface or ground(QG) heat fluxes are computed. Annual averages for QSWR, QLWR, QH, QL and QG of 19.65,-49.16, 26.40,-0.77 and 3.86 W·m-2 were derived based on an albedo value of 0.8. QSWR and QH are the major sources of heat gain to the surface and QLWR is the major component of heat loss from the surface. An i terative method is used to estimate surface temperature in this paper;surface temperature of snow/ice is gradually increased or decreased, thereby changing longwave radiation, sensible, latent and subsurface heat fluxes, so that the net energy balance becomes zero. Mass loss due to sublimation at PANDA-N station for 2014 is estimated to be 12.18 mm w.e.·a-1;and mass gain due to water vapour deposition is estimated to be 3.58 mm w.e.·a-1. Thus the net mass loss due to sublimation/deposition is 8.6 mm w.e.·a-1. This study computes surface energy fluxes using a model, instead of direct measurements. Also there are missing data especially for wind speed, though 2 m air temperature data is almost continuously available throughout the year. The uncertainties of albedo, wind speed and turbulent fluxes cause the most probable error in monthly values of QLWR, QH, QL, QG and surface temperature of about ±4%, ±20%, ±50%, ±11% and ±0.74 K respectively.
基金This work is funded by the National Key R&D Program of China(2017YFA0603103)the National Natural Science Foundation of China(41974009,42004007)+1 种基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDB-SSW-DQC027,QYZDJ-SSW-DQC042)the open fund of State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2021-2-6)。
文摘We provide estimates of glacier mass changes in the High Mountain Asia (HMA) area from April2002 to August 2016 by employing a new version of gravity solutions of the Gravity Recovery and ClimateExperiment (GRACE) twin-satellite mission. We find a total mass loss trend of the HMA glaciers at a rateof –22.17 (±1.96) Gt/a. The largest mass loss rates of –7.02 (±0.94) and –6.73 (±0.78) Gt/a are found forthe glaciers in Nyainqentanglha Mountains and Eastern Himalayas, respectively. Although most glaciers inthe HMA area show a mass loss, we find a small glacier mass gain of 1.19 (±0.55) and 0.77 (±0.37) Gt/a inKarakoram Mountains and Western Kunlun Mountains, respectively. There is also a nearly zero massbalance in Pamirs. Our estimates of glacier mass change trends confirm previous results from the analysisof altimetry data of the ICESat (ICE, Cloud and Land Elevation Satellite) and ASTER (AdvancedSpaceborne Thermal Emission and Reflection Radiometer) DEM (Digital Elevation Model) satellites inmost of the selected glacier areas. However, they largely differ to previous GRACE-based studies which weattribute to our different post-processing techniques of the newer GRACE data. In addition, we explicitlyshow regional mass change features for both the interannual glacier mass changes and the 14-a averagedseasonal glacier mass changes. These changes can be explained in parts by total net precipitation (netsnowfall and net rainfall) and net snowfall, but mostly by total net radiation energy when compared to datafrom the ERA5-Land meteorological reanalysis. Moreover, nearly all the non-trend interannual masschanges and most seasonal mass changes can be explained by the total net radiation energy data. The massloss trends could be partly related to a heat effect due to increased net rainfall in Tianshan Mountains, QilianMountains, Nyainqentanglha Mountains and Eastern Himalayas. Our new results for the glacier mass changein this study could help improve the understanding of glacier variation in the HMA area and contribute tothe study of global change. They could also serve the utilization of water resources there and in neighboringareas.
基金supported by the Chinese Academy of Sciences(KJZD-EW-G03-04)the National Natural Science Foundation of China(41721091,41671071)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2017490711)
文摘Due to global warming, glaciers on the Tibetan Plateau(TP) are experiencing widespread shrinkage; however, the mechanisms controlling glacier variations across the TP are still rather unclear, especially on the northeastern TP. In this study, a physically based, distributed surface-energy and mass-balance model was used to simulate glacier mass balance forced by meteorological data. The model was applied to Laohugou No. 12 Glacier, western Qilian Mountains, China, during2010~2012. The simulated albedo and mass balance were validated and calibrated by in situ measurements. The simulated annual glacier-wide mass balances were-385 mm water equivalent(w.e.) in 2010/2011 and-232 mm w.e. in 2011/2012,respectively. The mean equilibrium-line altitude(ELA) was 5,015 m a.s.l., during 2010~2012, which ascended by 215 m compared to that in the 1970 s. The mean accumulation area ratio(AAR) was 39% during the two years. Climatic-sensitivity experiments indicated that the change of glacier mass balance resulting from a 1.5 °C increase in air temperature could be offset by a 30% increase in annual precipitation. The glacier mass balance varied linearly with precipitation, at a rate of130 mm w.e. per 10% change in total precipitation.
基金Project(50376076) supported by the National Natural Science Foundation of China
文摘The influence of aluminum electrolyte component on its temperature is an important issue within the field of aluminum reduction with pre-baked cells. The characteristic correlation between excess AlF3 concentration and aluminum electrolyte temperature was explored through the modeling of heat and mass transfer processes in industrial pre-baked aluminum reduction cells. A coupled heat/mass-balance model was derived theoretically from the mass and energy balance of an electrolysis cell, and then was simplified properly into a practical expression. The model demonstrates that if environmental temperature and Al2O3 concentration keep constant, the excess AlF3 concentration decreases with the aluminum electrolyte temperature linearly and its decrease rate is dependent on the heat transfer property of aluminum electrolyte, side wall and cell shell. Secondly, experiments were conducted on site with two industrial cells in an aluminum electrolysis plant. Excess AlF3 concentration and aluminum electrolyte temperature were obtained simultaneously together with other parameters such as Al2O3, CaF2, MgF2 and LiF concentrations. Results show that the maximum absolute error between the tested value and the calculated value of excess AlF3 concentration using the proposed model is less than 2%. This reveals that the coupled heat/mass-balance model can appropriately characterize the correlation between excess AlF3 concentration and aluminum electrolyte temperature with good accuracy and practicability.
基金supported by the Innovation Research Project of Chinese Academy of Sciences(KZXC2-YW- 310)the National Basic Research Program of China(2005CB422003)+2 种基金the National Natural Science Foundation of China for Distinguished Young Scholar(40525001),the National Natural Science Foundation of China (40901041,40903056 and 40871038)National Special Basic Research Fund for the Glacier Resources and Glacier Change Survey(2006FY-1102007)the Western Light Talent Culture Project of the Chinese Academy of Sciences(290928601)
文摘Based on the field observations on Qiyi Glacier during the warm season of 2007,using a digital elevation model(DEM,15 m resolution),we developed a distributed surface energy-and mass-balance model with an hourly resolution.The model described the effect of topography on shortwave solar radiation,and used a new parameterization for glacier albedo.The model was applied to Qiyi Glacier in the Qilian Mountain,China,for the period 20:00 30 June to 12:00 10 October 2007,to simulate the firn-line changes,the temporal and spatial variations of mass balance,and the glacial meltwater runoff.The results indicated that the patterns of altitudinal profile of glacier mass-balance were affected mainly by the altitudinal profile of albedo,and the status of the glacier mass balance was influenced directly by the values of albedo.The parameter sensitivity test showed that the model was sensitive to the air temperature lapse rate and precipitation gradient,and also sensitive to the threshold temperature for solid/liquid precipitation.Furthermore,the climate sensitivity test showed that the mass balance was more sensitive to air temperature than precipitation,and the response of mass balance to air temperature change was nonlinear while the response to precipitation change linearly.The negative mass balance trend of the glacier can not be reversed when precipitation increases by 20%and meanwhile air temperature rises by 1°C.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41325017 & 41274158)
文摘In this article, the energy balance method is used to retrieve thermospheric mass density from CHAMP satellite precise orbit determination(POD) data during 2007–2009. The retrieved thermospheric mass densities are compared with those from accelerometer data and an empirical model. The main conclusions are as follows:(1) Thermospheric mass density can be retrieved from POD data by the energy balance and semi-major axis decay methods, whose results are consistent.(2) The accuracy of the retrieved densities depends on the integration time period, and the optimal period for CHAMP density retrieval from POD data is about 20 minutes.(3) The energy balance method can be used to calibrate accelerometer data.(4) The accuracy of retrieving thermospheric density from POD data varies with satellite altitude and local time.
基金supported by the Gansu Provincial Science and Technology Program (22ZD6FA005)the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2022)+2 种基金the National Key Research and Development Program of China (2020YFF0304400)the National Natural Science Foundation of China (42001066)the National Natural Science Foundation of China (42001067).
文摘The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far.In the present study,using the snow cover model SNOWPACK,the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No.1(Chinese Tien Shan)was simulated between July 12,2022 and August 31,2022.The mass changes and the energy fluxes with and without material cover were compared.The results indicated that the geotextile covering reduced glacier ablation by approximately 68%compared to the ablation in the uncovered regions.The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%.Thermal insulation of the geotextile reduced the sensible heat flux by 15%.In addition,the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux.This cooling effect reduced the energy available for ablation by 20%.Consequently,only 37%of the energy was used for melting compared to that used in the uncovered regions(67%).Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%,and a further increase in the thickness of the geotextile cover led to little improvements.A higher temperature and greater wind speed increased glacier ablation,although their effects were small.When the precipitation was set to zero,it led to a significantly increased melt.Overall,the geotextile effectively protected the glacier tongue from rapid melting,and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.
文摘采用HOCK的分布式能量物质平衡模型对老虎沟12号冰川消融期的物质平衡进行了模拟,时间步长为1 h,空间分辨率为30 m.模型结果利用物质平衡观测数据和气象站观测数据验证,模型模拟时期为2012年6月1日-9月30日.模型模拟结果表明,地形因子对太阳辐射影响相当显著;散射辐射在总辐射中的比例较大为39%,模拟期冰川表面物质平衡为-506 mm w.e..在模拟期整个冰川平均上净辐射占能量收入的84%,感热通量占有16%;消融耗热则是能量的主要支出占有62%,潜热通量占有能量支出的38%.
文摘根据2000年和2006年秋季长江口及毗邻水域渔业资源和生态环境调查数据,利用Ecopath with Ecosim软件,构建2个时期的长江口及毗邻水域生态能量通道模型,比较分析了三峡工程蓄水前后长江口及毗邻水域生态系统的结构和能量流动特征。模型包含鱼类、虾类、蟹类、头足类、浮游动物、浮游植物、底栖动物、碎屑等17个功能群,基本覆盖了能量流动的途径。分析结果表明,2006年秋季长江口及毗邻水域生态系统的总生物量、系统总流量比2000年秋季有所下降,碎屑链的重要性略有降低;由于低营养级层次渔获物数量的增加,渔获物平均营养级有所下降。2个时期长江口及毗邻水域生态系统的再循环率较低,仍有较高的剩余生产量有待利用,均处于不成熟的发育期。