期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure and Mechanical Performance of Cu-SnO_2-rGO based Composites Prepared by Plasma Activated Sintering 被引量:2
1
作者 罗国强 HUANG Jing +4 位作者 JIN Zhipeng LI Meijuan JIANG Xiaojuan SHEN Qiang ZHANG Lianmeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1152-1158,共7页
A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers... A novel chemical technique combined with unique plasma activated sintering(PAS) was utilized to prepare consolidated copper matrix composites(CMCs) by adding Cu-SnO2-rGO layered micro powders as reinforced fillers into Cu matrix. The repeating Cu-SnO2-rGO structure was composed of inner dispersed reduced graphene oxide(r GO), SnO2 as intermedia and outer Cu coating. SnO2 was introduced to the surface of rGO sheets in order to prevent the graphene aggregation with SnO2 serving as spacer and to provide enough active sites for subsequent Cu deposition. This process can guarantee rGO sheets to suffi ciently disperse and Cu nanoparticles to tightly and uniformly anchor on each layer of rGO by means of the SnO2 active sites as well as strictly control the reduction speed of Cu^2+. The complete cover of Cu nanoparticles on rGO sheets thoroughly avoids direct contact among rGO layers. Hence, the repeating structure can simultaneously solve the wettability problem between rGO and Cu matrix as well as improve the bonding strength between rGO and Cu matrix at the well-bonded Cu-SnO2-rGO interface. The isolated rGO can effectively hinder the glide of dislocation at Cu-rGO interface and support the applied loads. Finally, the compressive strength of CMCs was enhanced when the strengthening effi ciency reached up to 41. 展开更多
关键词 graphene Cu-SnO2-rGO structure copper matrix composites sensitization plasma activated sintering mechanical property
下载PDF
Preliminary Investigation of Preparing High Burn-Up Structure in Nuclear Fuel by Flash Sintering Using CeO_(2) as a Surrogate
2
作者 Tongye Li Jing Yang +3 位作者 Chong Yu Yihan Liang Yang Li Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第12期1758-1768,共11页
The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pil... The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pile irradiation.HBS is considered a new potential structure for high-performance fuels.However,it is difficult to prepare HBS by conventional sintering methods.In this study,flash sintering was used to prepare HBS using CeO_(2)as a surrogate for a preliminary investigation.A new experimental configuration for rapid sintering of CeO_(2)pellets was provided,in which the green body can be rapidly preheated and pressure-assisted by the induction heating electrodes.An insulated quartz tube was used as the die for the flash sintered samples,allowing the current to flow through the sample and providing a stable condition for applying an external pressure of approximately 5.3-7.0 MPa during flash sintering process.Using an initial electric field of 141 V cm-1 and holding for 1-7 min at the maximum current density of~98 mA mm^(-2),CeO_(2)ceramics with a grain size of 114-282 nm and a relative density of 75.4-99.7%were prepared.The densification and microstructure evolution behaviors during flash sintering in this new experimental configuration have been discussed in detail.This new experimental configuration may provide a promising approach for preparing UO_(2)ceramics and their HBS. 展开更多
关键词 High burn-up structure Flash sintering CeO_(2)ceramic Grain growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部