In order to quantitatively predict the behavior of the material in the packed bed, a single particle model is developed to describe the combustion and sintering process inside an individual particle composed of multip...In order to quantitatively predict the behavior of the material in the packed bed, a single particle model is developed to describe the combustion and sintering process inside an individual particle composed of multiple solid material fines, including iron ore, coke and limestone, and is applied to the combustion modeling of an iron ore sintering. Byanalyzing three typical fuel distribution cases using the developed single particle combustion model, the effects of temperature and oxygen concentration gradient inside the particle on heat and mass transfer and the combustion behavior of the iron ore sintering process areinvestigated. Considering the various combustion rates which are highly dependent on the fuel distribution methods, correction factor for single particle model is also introduced and systematically analyzed. The aim of this research is to supplement particle technology to conventional approach and it is found that the oxygen concentration gradient inside the particle is significantly affected from the mixing method thereby changing the completion times of sintering process.展开更多
The inhomogeneous sinter properties in super-high bed sintering have been reported in our previous research.To inves-tigate the reasons for the inhomogeneous phenomena,detailed sampling and analysis of mixed material ...The inhomogeneous sinter properties in super-high bed sintering have been reported in our previous research.To inves-tigate the reasons for the inhomogeneous phenomena,detailed sampling and analysis of mixed material bed and sintered bed in super-high bed sintering plant were executed.The results indicated that the higher porosity and thinner dendrite of silico-ferrite of calcium and aluminum in the upper layer as well as dense structure and higher secondary hematite content in the lower layer led to the heterogeneities of mechanical strength and reduction properties exceeding 20%and 10%,respectively.From the bed top downward,the basicity of mixed material decreased from 2.13 to 1.68 because the average particle size increased from 2.65 to 4.56 mm.Fluxes and fuels gathered in finer particles(-3 mm)of mixed material,and the-3 mm particles of mixed material generated more liquid phase than+3 mm ones.The heat input of super-high sintering bed was inhomogeneous due to the heat accumulation effect and unreasonable fuel distribution.The inhomo-geneous sintering heat condition in sintering bed resulted in the different quantities and properties of liquid phase.The inhomogeneous quantities and properties of liquid phase that were influenced by inhomogeneous distribution of chemical composition,particle size,and heat input led to inhomogeneous mineralizing results.Homogeneous mineralizing condition is the key for homogeneous super-high bed sintering.展开更多
文摘In order to quantitatively predict the behavior of the material in the packed bed, a single particle model is developed to describe the combustion and sintering process inside an individual particle composed of multiple solid material fines, including iron ore, coke and limestone, and is applied to the combustion modeling of an iron ore sintering. Byanalyzing three typical fuel distribution cases using the developed single particle combustion model, the effects of temperature and oxygen concentration gradient inside the particle on heat and mass transfer and the combustion behavior of the iron ore sintering process areinvestigated. Considering the various combustion rates which are highly dependent on the fuel distribution methods, correction factor for single particle model is also introduced and systematically analyzed. The aim of this research is to supplement particle technology to conventional approach and it is found that the oxygen concentration gradient inside the particle is significantly affected from the mixing method thereby changing the completion times of sintering process.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52274290).
文摘The inhomogeneous sinter properties in super-high bed sintering have been reported in our previous research.To inves-tigate the reasons for the inhomogeneous phenomena,detailed sampling and analysis of mixed material bed and sintered bed in super-high bed sintering plant were executed.The results indicated that the higher porosity and thinner dendrite of silico-ferrite of calcium and aluminum in the upper layer as well as dense structure and higher secondary hematite content in the lower layer led to the heterogeneities of mechanical strength and reduction properties exceeding 20%and 10%,respectively.From the bed top downward,the basicity of mixed material decreased from 2.13 to 1.68 because the average particle size increased from 2.65 to 4.56 mm.Fluxes and fuels gathered in finer particles(-3 mm)of mixed material,and the-3 mm particles of mixed material generated more liquid phase than+3 mm ones.The heat input of super-high sintering bed was inhomogeneous due to the heat accumulation effect and unreasonable fuel distribution.The inhomo-geneous sintering heat condition in sintering bed resulted in the different quantities and properties of liquid phase.The inhomogeneous quantities and properties of liquid phase that were influenced by inhomogeneous distribution of chemical composition,particle size,and heat input led to inhomogeneous mineralizing results.Homogeneous mineralizing condition is the key for homogeneous super-high bed sintering.