期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process 被引量:1
1
作者 Mostafa Amirjan Mansour Bozorg 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期94-101,共8页
The properties orAl based nanocomposite metal foams and their corrosion behaviors were investigated in this study. For this, the composite metal foams with different relative densities (porosity) reinforced with alu... The properties orAl based nanocomposite metal foams and their corrosion behaviors were investigated in this study. For this, the composite metal foams with different relative densities (porosity) reinforced with alumina nanoparticles were prepared using a powder me- tallurgy-based sintering-dissolution process (SDP) and NaC1 particles were used as space holders. Then, the effect of nanoparticle rein- forcement and different amounts of NaC1 space holders (corresponding porosity) on the microstructure, morphology, density, hardness, and electrochemical specifications of the samples were investigated. It was found that as the relative density increased from 60% to 70%, the wall thickness increased from about 200 to 300 pro, which led to a decrease in pore size. Also, the addition of nanoparticle reinforcement and the increased relative density result in increasing metal foam hardness. Moreover, electrochemical test results indicated that increasing the A1203 content reduced the corrosion rate, but increasing the porosity enhanced it. 展开更多
关键词 aluminum-alumina nanocomposite metal foam sintering-dissolution process corrosion behavior electrochemical impedance
下载PDF
Powder metallurgy with space holder for porous titanium implants:A review 被引量:6
2
作者 Alejandra Rodriguez-Contreras Miquel Punset +3 位作者 JoséA.Calero Francisco Javier Gil Elisa Ruperez JoséMaría Manero 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第17期129-149,共21页
One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shieldi... One of the biggest challenges in the biocompatibility of implantable metals is the prevention of the stress shielding effect,which is related to the coupling of the bone-metal mechanical properties.This stress shielding phenomenon provokes bone resorption and the consequent adverse effects on prosthesis fixation.However,it can be inhibited by adapting the stiffness of the implant material.Since the use of titanium(Ti)porous structures is a great alternative not only to inhibit this effect but also to improve the osteointegration of orthopedic and dental implants,a brief description of the techniques used for their manufacturing and a review of the current commercialized implants produced from porous Ti assemblies are compiled in this work.As powder metallurgy(PM)with space holder(SH)is a powerful technology used to produce porous Ti structures,it is here discussed its potential for the fabrication of medical devices from the perspectives of both design and manufacture.The most important parameters of the technique such as the size and shape of the initial metallic particles,the SH and binder type of materials,the compaction pressure of the green form,and in the sintering stage,the temperature,atmosphere,and time are reviewed according to the bibliography reported.Furthermore,the importance of the porosity and its types together with the influence of the mentioned parameters in the final porosity and,consequently,in the ultimate mechanical properties of the structure are discussed.Finally,a few examples of the PM-SH application for the manufacturing of orthopedic implants are presented. 展开更多
关键词 Powder metallurgy Space holder method Porous titanium structures Medical devices Stress shielding effect Porous materials permeability Interconnected porosity Porous bone substitute materials Open-cell titanium foams sintering-dissolution technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部