In this work,we introduce a kind of new structured radial grating,which is named the even-type sinusoidal amplitude radial(ETASR)grating.Based on diffraction theory and the principle of stationary phase,a comprehensiv...In this work,we introduce a kind of new structured radial grating,which is named the even-type sinusoidal amplitude radial(ETASR)grating.Based on diffraction theory and the principle of stationary phase,a comprehensive theoretical investigation on the diffraction patterns of ETASR gratings is conducted.Theoretical results show that novel carpet beams with beautiful optical structures and distinctive characteristics have been constructed on the basics of the ETASR grating.Their diffraction patterns are independent of propagation distance,that is,the new carpet beams have diffraction-free propagating characteristics.The non-diffracting carpet beams are divided into two types by beam characteristics:non-diffracting integer-order and half-integer-order carpet beams.Subsequently,we experimentally generate these carpet beams using the ETASR grating.Finally,their particularly interesting optical morphology and features are explored through numerical simulations and experiments.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11974314 and 11674288).
文摘In this work,we introduce a kind of new structured radial grating,which is named the even-type sinusoidal amplitude radial(ETASR)grating.Based on diffraction theory and the principle of stationary phase,a comprehensive theoretical investigation on the diffraction patterns of ETASR gratings is conducted.Theoretical results show that novel carpet beams with beautiful optical structures and distinctive characteristics have been constructed on the basics of the ETASR grating.Their diffraction patterns are independent of propagation distance,that is,the new carpet beams have diffraction-free propagating characteristics.The non-diffracting carpet beams are divided into two types by beam characteristics:non-diffracting integer-order and half-integer-order carpet beams.Subsequently,we experimentally generate these carpet beams using the ETASR grating.Finally,their particularly interesting optical morphology and features are explored through numerical simulations and experiments.