期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Natural Convection Heat Transfer in a Porous Cavity with Sinusoidal Temperature Distribution Using Cu/Water Nanofluid: Double MRT Lattice Boltzmann Method
1
作者 Hasan Sajjadi Amin Amiri Delouei +2 位作者 Rasul Mohebbi Mohsen Izadi Sauro Succi 《Communications in Computational Physics》 SCIE 2021年第1期292-318,共27页
In this study,natural convection flow in a porous cavity with sinusoidal temperature distribution has been analyzed by a new double multi relaxation time(MRT)Lattice Boltzmann method(LBM).We consider a copper/water na... In this study,natural convection flow in a porous cavity with sinusoidal temperature distribution has been analyzed by a new double multi relaxation time(MRT)Lattice Boltzmann method(LBM).We consider a copper/water nanofluid filling a porous cavity.For simulating the temperature and flow fields,D2Q5 and D2Q9 lattices are utilized respectively,and the effects of different Darcy numbers(Da)(0.001-0.1)and various Rayleigh numbers(Ra)(10^(3)-10^(5))for porosity(ε)between 0.4 and 0.9 have been considered.Phase deviation(θ)changed from 0 toπand the volume fraction of nanoparticles(∅)varied from 0 to 6%.The present results show a good agreement with the previous works,thus confirming the reliability the new numerical method proposed in this paper.It is indicated that the heat transfer rate increases at increasing Darcy number,porosity,Rayleigh number,the volume fraction of nanoparticles and phase deviation.However,the most sensitive parameter is the Rayleigh number.The maximum Nusselt deviation is 10%,32%and 33%for Ra=10^(3),10^(4) and 10^(5),respectively,withε=0.4 toε=0.9.It can be concluded that the effect of Darcy number on the heat transfer rate increases at increasing Rayleigh number,yielding a maximum enhancement of the average Nusselt number around 12%and 61%for Ra=10^(3) and Ra=10^(5),respectively. 展开更多
关键词 Porous media double multi relaxation time-lattice Boltzmann method NANOFLUID natural convection sinusoidal temperature distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部