期刊文献+
共找到17,389篇文章
< 1 2 250 >
每页显示 20 50 100
Centrifuge modeling of a large-scale surcharge on adjacent foundation
1
作者 Jinzhang Zhang Zhenwei Ye +4 位作者 Dongming Zhang Hongwei Huang Shijie Han Tong Zou Le Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3181-3191,共11页
This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered load... This study investigates the ground and structural response of adjacent raft foundations induced by largescale surcharge by ore in soft soil areas through a 130g centrifuge modeling test with an innovative layered loading device.The prototype of the test is a coastal iron ore yard with a natural foundation of deep soft soil.Therefore,it is necessary to adopt some measures to reduce the influence of the large-scale surcharge on the adjacent raft foundation,such as installing stone columns for foundation treatment.Under an acceleration of 130 g,the model conducts similar simulations of iron ore,stone columns,and raft foundation structures.The tested soil mass has dimensions of 900 mm×700 mm×300 mm(lengthwidthdepth),which is remodeled from the soil extracted from the drilling holes.The test conditions are consistent with the actual engineering conditions and the effects of four-level loading conditions on the composite foundation of stone columns,unreinforced zone,and raft foundations are studied.An automatic layer-by-layer loading device was innovatively developed to simulate the loading process of actual engineering more realistically.The composite foundation of stone columns had a large settlement after the loading,forming an obvious settlement trough and causing the surface of the unreinforced zone to rise.The 12 m surcharge loading causes a horizontal displacement of 13.19 cm and a vertical settlement of 1.37 m in the raft foundation.The stone columns located on both sides of the unreinforced zone suffered significant shear damage at the sand-mud interface.Due to the reinforcement effect of stone columns,the sand layer below the top of the stone columns moves less.Meanwhile,the horizontal earth pressure in the raft foundation zone increases slowly.The stone columns will form new drainage channels and accelerate the dissipation of excess pore pressure. 展开更多
关键词 centrifuge modeling Stone column Composite foundation Ground movement Raft foundation
下载PDF
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling
2
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling centrifuge Anti-dip slope Failure mechanism Discrete element method
下载PDF
A modified generalized scaling law for the similitude of dynamic strain in centrifuge modeling
3
作者 Ma Qiang Ling Daosheng +2 位作者 Meng Di Kyohei Ueda Zhou Yanguo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期589-600,共12页
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s... Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed. 展开更多
关键词 deep deposit seismic response generalized scaling law centrifuge model test
下载PDF
Experimental Analysis of Radial Centrifugal Pump Shutdown
4
作者 Xiao Sun Jiangbo Tong +4 位作者 Yuliang Zhang Haibing Cai Wen Zhou Xiaoqi Jia Litao Ou 《Fluid Dynamics & Materials Processing》 EI 2024年第4期725-737,共13页
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ... Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately. 展开更多
关键词 centrifugal pump power frequency frequency conversion SHUTDOWN external characteristic experimental study
下载PDF
Blade Wrap Angle Impact on Centrifugal Pump Performance:Entropy Generation and Fluid-Structure Interaction Analysis
5
作者 Hayder Kareem Sakran Mohd Sharizal Abdul Aziz Chu Yee Khor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期109-137,共29页
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal... The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles. 展开更多
关键词 centrifugal pump blade wrap angle entropy generation theory fluid-structure interaction hydraulic performance
下载PDF
Effect of the Density of Molten Metal on the Raining Phenomenon in Horizontal Centrifugal Casting
6
作者 Miguel A. Barron Joan Reyes 《Open Journal of Applied Sciences》 2024年第7期1918-1926,共9页
In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were ca... In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were carried out using Computational Fluid Dynamics software. Three molten metals with different density, namely aluminum, iron and lead, and three angular frequencies, namely 50, 66 and 77 rad/s were considered. It is found that the density of the molten metal significantly affects the emergence, transient or permanent, of the rain phenomenon. However, the magnitude and duration of the rain phenomenon depend on the angular frequency of the rotating mold. Likewise, since gravitational forces affect the metal according to its density, the value of the critical rotation speed of the mold is also affected. 展开更多
关键词 Angular Frequency centrifugal Force Computational Fluid Dynamics Critical Rotation Speed G Factor Horizontal centrifugal Casting Molten Metal Density
下载PDF
基于RFPA-Centrifuge的顺层边坡稳定性数值试验分析 被引量:13
7
作者 王东 曹兰柱 宋子岭 《露天采矿技术》 CAS 2008年第4期32-34,共3页
基于离心加载法的原理,应用岩石破裂过程分析RFPA2D软件对某露天矿边坡的变形及破坏过程进行了数值试验研究,再现了边坡失稳的动态过程。根据数值试验所得出的模拟结果,分析得出了该边坡最危险滑动面的形成机制。为边坡失稳的预测及防... 基于离心加载法的原理,应用岩石破裂过程分析RFPA2D软件对某露天矿边坡的变形及破坏过程进行了数值试验研究,再现了边坡失稳的动态过程。根据数值试验所得出的模拟结果,分析得出了该边坡最危险滑动面的形成机制。为边坡失稳的预测及防治提供科学依据。 展开更多
关键词 岩质边坡 数值试验 离心加载法 最危险滑动面
下载PDF
Centrifuge modeling of buried continuous pipelines subjected to normal faulting 被引量:12
8
作者 Majid Moradi Mahdi Rojhani +1 位作者 Abbas Galandarzadeh Shiro Takada 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期155-164,共10页
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.... Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated. 展开更多
关键词 centrifuge models buried pipeline normal faulting EARTHQUAKE permanent ground deformation
下载PDF
Uplift mechanism for a shallow-buried structure in liquefi able sand subjected to seismic load: centrifuge model test and DEM modeling 被引量:4
9
作者 Zhou Jian Wang Zihan +1 位作者 Chen Xiaoliang Zhang Jiao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期203-214,共12页
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the s... Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power. 展开更多
关键词 centrifuge modeling underground structure LIQUEFACTION distinct element method saturated sand
下载PDF
Numerical modeling of centrifuge cyclic lateral pile load experiments 被引量:8
10
作者 Nikos Gerolymos Sandra Escoffier +1 位作者 George Gazetas Jacques Garnier 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期61-76,共16页
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoir... To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented. 展开更多
关键词 centrifuge test Winkler model p-y curves cyclic loading pile-soil separation/gapping nonlinear response experimental validation
下载PDF
Centrifuge modeling of PGD response of buried pipe 被引量:5
11
作者 Michael O'Rourke Vikram Gadicherla Tarek Abdoun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期69-73,共5页
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi... A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results. 展开更多
关键词 EARTHQUAKES buried pipe permanent ground deformation centrifuge models fault crossings lifeline earthquake engineering
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:3
12
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK MIXTURE SLOPE stability SLOPE FAILURE centrifuge model test
下载PDF
DNA recovery from agarose gels with a simple centrifuge-driven sephadex filtration 被引量:3
13
作者 Niu Chen Li Yun 《Forestry Studies in China》 CAS 2006年第1期32-34,共3页
Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and... Conventional methods of DNA recovery from agarose gel generally require expensive equipment, extended elution times, or considerable handling of the sample after elution. We developed a simple protocol for a quick and effective recovery of DNA from agarose gels with good yield and quality. Using a Sephadex resin filled spin column, DNA fragments of 500 bp to 6 kb in an agarose gel slice were easily recovered by a 2 min centrifugation. The recovery efficiencies were over 40% -50% and the eluted DNA can be used directly for downstream application, such as polymerase chain reactions (PCR) and restriction enzyme digestion. This method could also be used to recover large DNA fragment (48 kb) without degradation. The use of Sephadex helps to remove small molecular impurities from agarose and it also reduces the chance of clogging the column filter caused by direct contact with agarose. 展开更多
关键词 DNA recovery agarose gel SEPHADEX filter column centrifuge
下载PDF
Centrifuge model tests on pile-reinforced slopes subjected to drawdown 被引量:4
14
作者 Sujia Liu Fangyue Luo Ga Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1290-1300,共11页
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d... Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown. 展开更多
关键词 SLOPE PILE DRAWDOWN FAILURE REINFORCEMENT centrifuge model test
下载PDF
A Practical Strategy of Unbalance Identification and Correction for 2-DOF Precision Centrifuges 被引量:1
15
作者 Xin Huo Shuangpeng Zheng +1 位作者 Yu Yao Weishan Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第1期29-38,共10页
Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance ident... Unbalance existing in the mechanical systems is one of the most common causes which leads to unexpected vibration,nonsmooth motions,uncertain dynamics and even instability. In this paper,the problem of unbalance identification and correction is investigated for the countershaft system of a precision centrifuge with two degrees of freedom. According to the characteristics of the load under test installed on the countershaft,a gradual subdivision algorithm is proposed to identify the phase of the unbalance,and its amplitude is calculated by using a space vector algorithm,where the vibration information of the mainshaft system is obtained by utilizing two axis-layout displacement transducers installed associated to the mainshaft.Based on ADAMS software,some numerical simulations are presented and compared,and further,the validity of the strategy is demonstrated by experimental examples. 展开更多
关键词 dynamic UNBALANCE IDENTIFICATION and CORRECTION precision centrifuge countershaft system ADAIMS
下载PDF
Study on High Stiffness Gas Bearing for Precision Centrifuger 被引量:1
16
作者 齐乃明 李中郢 +1 位作者 杨国军 刘暾 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第4期47-50,共4页
A high stiffness and precision gas bearing system is developed in accordance with the requirements for a precision centrifuger. Finite element method and optimiztion of parameters are employed for optimization of gas ... A high stiffness and precision gas bearing system is developed in accordance with the requirements for a precision centrifuger. Finite element method and optimiztion of parameters are employed for optimization of gas bearing design, and this enable the bearing system to be successfully used in the inertial navigation test system. 展开更多
关键词 PRECISION centrifuger GAS BEARING STIFFNESS of GAS BEARING
下载PDF
ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD 被引量:1
17
作者 DongLonglei YanGuirong LiRonglin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期237-242,共6页
The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure.... The mechanical characteristics of the electro-hydraulic servo system in thecentrifuge field are analyzed. The hydraulic pressure law in the centrifuge field indicates theexistence of the centrifuge hydraulic pressure. The mechanical characteristics of the slide-valveand the dual nozzle flapper valve are studied, and it is found that the centrifuge field can notonly increase the driving force or moment of the function units, but also decrease the stability ofthe components. Finally by applying Gauss minimum constraint principle, the dynamic model of theelectro-hydraulic vibrator in the centrifuge field is established, and the mechanical restriction ofthe system is also presented. The study will be helpful for the realization of the combinedvibration and centrifuge test system. 展开更多
关键词 Electro-hydraulic servo system centrifuge field Mechanical characteristics
下载PDF
Numerical Analysis and Centrifuge Modeling of Shallow Foundations 被引量:1
18
作者 罗强 栾茂田 +2 位作者 杨蕴明 王忠涛 赵守正 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期163-180,共18页
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS... The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen. 展开更多
关键词 non-coaxial model strain softening FEM analysis centrifuge test shallow foundation
下载PDF
Influence of pile spacing on seismic response of piled raft in soft clay: centrifuge modeling 被引量:1
19
作者 Yang Jun Yang Min Chen Haibing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期719-733,共15页
In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of accelerat... In order to study the infl uence of pile spacing on the seismic response of piled raft in soft clay, a series of shaking table tests were conducted by using a geotechnical centrifuge. The dynamic behavior of acceleration, displacement and internal forces was examined. The test results indicate that the seismic acceleration responses of models are generally greater than the surrounding soil surface in the period ranges of 2–10 seconds. Foundation instant settlements for 4×4 and 3×3 piled raft (with pile spacing equal to 4 and 6 times pile diameter) are somewhat close to each other at the end of the earthquake, but reconsolidation settlements are greater for 3×3 piled raft. The seismic acceleration of superstructure, the uneven settlement of the foundation and the maximum bending moment of pile are relatively lower for 3×3 piled raft. Successive earthquakes lead to the softening behavior of soft clay, which causes a reduction of the pile bearing capacity and thus loads are transferred from the pile group to the raft. For the case of a 3×3 piled raft, there is relatively smaller change of the load sharing ratio of the pile group and raft after the earthquake and the distribution of maximum bending moments at the pile head is more uniform. 展开更多
关键词 piled RAFT PILE SPACING soft clay dynamic centrifuge model test seismic response SUBSIDENCE load sharing bending moment
下载PDF
Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils 被引量:5
20
作者 Xingsen Guo Tingkai Nian +4 位作者 Wei Zhao Zhongde Gu Chunpeng Liu Xiaolei Liu Yonggang Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期363-373,共11页
Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using fu... Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using full-flow penetration penetrometers to evaluate marine soil strength in the deep penetration;however,a method considering the effect of ambient water on the surface penetration needs to be established urgently.In this study,penetrometers with multiple probes were developed and used to conduct centrifuge experiments on South China Sea soil and kaolin clay.First,the forces on the probes throughout the penetration process were systematically analyzed and quantified.Second,the spatial influence zone was determined by capturing the resistance changes and sample crack development,and the penetration depth for a sample to reach a stable failure mode was given.Third,the vane shear strength was used to invert the penetration resistance factor of the ball and determine the range of the penetration resistance factor values.Furthermore,a methodology to determine the penetration resistance factors for surface marine soils was established.Finally,the effect of the water cavity above various probes in the surface penetration was used to formulate an internal mechanism for variations in the penetration resistance factor. 展开更多
关键词 Static penetrometer centrifuge experiment Deep-sea surface soil Undrained shear strength Penetration resistance factor Water cavity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部