BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple b...BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.展开更多
BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,ide...BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,identifying efficient therapeutic modalities for constipation is of paramount importance.Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms.Consequently,we postulate that hydrogen therapy,an emerging and promising intervention,can serve as a safe and efficacious treatment for constipation.AIM To determine whether hydrogen-rich water(HRW)alleviates constipation and its potential mechanism.METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats.Rats freely consumed HRW,and were recorded their 24 h total stool weight,fecal water content,and charcoal propulsion rate.Fecal samples were subjected to 16S rDNA gene sequencing.Serum non-targeted metabolomic analysis,malondialdehyde,and superoxide dismutase levels were determined.Colonic tissues were stained with hematoxylin and eosin,Alcian blue-periodic acid-Schiff,reactive oxygen species(ROS)immunofluorescence,and immunohistochemistry for cell growth factor receptor kit(c-kit),PGP 9.5,sirtuin1(SIRT1),nuclear factor-erythroid-2-related factor 2(Nrf2),and heme oxygenase-1(HO-1).Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1,Nrf2 and HO-1.A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor,EX527,into constipated rats.NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression.RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h,fecal water content,charcoal propulsion rate,thickness of the intestinal mucus layer,c-kit expression,and the number of intestinal neurons.HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism.HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway.This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats.The serum metabolites,β-leucine(β-Leu)and traumatic acid,were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1.CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway,modulating gut microbiota and serum metabolites.β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.展开更多
In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver fa...In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF.展开更多
Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CC...Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.展开更多
Objectives:This study explores the protective effects of glycyrrhizic acid(GA)on sepsis-induced cellular damage and inflammation in acute lung injury(ALI),specifically through the modulation of the sirtuin 1(SIRT1)and h...Objectives:This study explores the protective effects of glycyrrhizic acid(GA)on sepsis-induced cellular damage and inflammation in acute lung injury(ALI),specifically through the modulation of the sirtuin 1(SIRT1)and high mobility group box 1(HMGB1)pathway.Methods:The study employed two experimental models:lipopolysaccharide(LPS)-induced BEAS-2B human lung epithelial cells and cecal ligation and puncture(CLP)rats,to simulate sepsis conditions.The cell model involved treatments with LPS,GA,control siRNA(si-NC),and SIRT1-specific siRNA(si-SIRT1).Evaluations included cell viability,apoptosis,and cytokine production.In the rat model,treatments included GA and the SIRT1 inhibitor EX527,with assessments on lung tissue damage,inflammation,and protein expression using Western blot and co-immunoprecipitation(Co-IP)analysis.Results:LPS exposure significantly reduced SIRT1 mRNA levels and cell viability in BEAS-2B cells,which effects were reversed by cotreatment with GA and si-NC but negated by si-SIRT1.LPS also induced apoptosis and increased pro-inflammatory cytokines and HMGB1 expression,which were mitigated by GA and si-NC and exacerbated by si-SIRT1.In CLP rats,GA treatment decreased lung tissue damage,inflammatory cytokines,and HMGB1 expression,and enhanced SIRT1 levels.However,these protective effects were reversed when GA was combined with EX527.Conclusion:GA demonstrates significant protective effects against LPS-induced damage and inflammation in lung cells and tissue by modulating the SIRT1-HMGB1 pathway.This suggests that GA could be a potential therapeutic strategy for treating sepsis and related inflammatory conditions.展开更多
Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the ex...Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF.展开更多
目的 探讨血清α-突触核蛋白(α-synuclein,α-syn)、沉默调节蛋白1(Sirtuin-1,SIRT1)水平与进展性脑梗死患者神经功能、梗死体积及预后的相关性。方法 回顾性分析100例急性脑梗死病例资料。根据脑梗死病情变化情况,分为进展组(n=45)和...目的 探讨血清α-突触核蛋白(α-synuclein,α-syn)、沉默调节蛋白1(Sirtuin-1,SIRT1)水平与进展性脑梗死患者神经功能、梗死体积及预后的相关性。方法 回顾性分析100例急性脑梗死病例资料。根据脑梗死病情变化情况,分为进展组(n=45)和非进展组(n=55)。依据入院时美国国立卫生研究院卒中量表(national institute of health stroke scale,NIHSS)评分、梗死体积及预后,对进展组病例进一步亚分组。比较不同神经功能缺损程度、梗死体积和预后结局,进展组病例血清α-syn、SIRT1水平差异及相关性,采用受试者工作特征(receiver operating characteristic,ROC)曲线分析α-syn、SIRT1对进展性脑梗死的诊断及预后预测价值。结果 进展组血清α-syn水平高于非进展组,SIRT1低于非进展组(均P<0.05)。SIRT1与α-syn联合预测进展性脑梗死的ROC曲线下面积(area under curve,AUC)为0.911(0.849~0.973),敏感度和特异度分别为84.38%和82.33%。随着神经功能缺损程度加重,进展性脑梗死患者血清α-syn水平呈现逐渐升高趋势,而SIRT1不断降低(P<0.05)。随着梗死体积增加,进展性脑梗死患者血清α-syn水平不断升高,而SIRT1表现为降低趋势(P<0.05)。与预后良好组比较,预后不良组血清SIRT1水平较低,α-syn水平偏高(P<0.05)。血清α-syn水平与进展性脑梗死患者神经功能缺损程度、梗死体积及预后不良均呈正相关(r=0.713、0.821、0.739,P<0.05)。血清SIRT1水平与进展性脑梗死患者神经功能缺损程度、梗死体积及预后不良均呈负相关(r=-0.694、-0.773,-0.633,P<0.05)。SIRT1与α-syn联合检测预测进展性脑梗死患者预后不良AUC为0.887(0.812~0.963),敏感度87.64%、特异度77.63%。结论 联合检测α-syn与SIRT1水平对预测脑梗死进展情况及预后不良具有较高价值,可为临床提供指导。展开更多
基金Supported by National Natural Science Foundation of China,No.82060123Doctoral Start-up Fund of Affiliated Hospital of Guizhou Medical University,No.gysybsky-2021-28+1 种基金Fund Project of Guizhou Provincial Science and Technology Department,No.[2020]1Y299Guizhou Provincial Health Commission,No.gzwjk2019-1-082。
文摘BACKGROUND Acute liver failure(ALF)has a high mortality with widespread hepatocyte death involving ferroptosis and pyroptosis.The silent information regulator sirtuin 1(SIRT1)-mediated deacetylation affects multiple biological processes,including cellular senescence,apoptosis,sugar and lipid metabolism,oxidative stress,and inflammation.AIM To investigate the association between ferroptosis and pyroptosis and the upstream regulatory mechanisms.METHODS This study included 30 patients with ALF and 30 healthy individuals who underwent serum alanine aminotransferase(ALT)and aspartate aminotransferase(AST)testing.C57BL/6 mice were also intraperitoneally pretreated with SIRT1,p53,or glutathione peroxidase 4(GPX4)inducers and inhibitors and injected with lipopolysaccharide(LPS)/D-galactosamine(D-GalN)to induce ALF.Gasdermin D(GSDMD)^(-/-)mice were used as an experimental group.Histological changes in liver tissue were monitored by hematoxylin and eosin staining.ALT,AST,glutathione,reactive oxygen species,and iron levels were measured using commercial kits.Ferroptosis-and pyroptosis-related protein and mRNA expression was detected by western blot and quantitative real-time polymerase chain reaction.SIRT1,p53,and GSDMD were assessed by immunofluorescence analysis.RESULTS Serum AST and ALT levels were elevated in patients with ALF.SIRT1,solute carrier family 7a member 11(SLC7A11),and GPX4 protein expression was decreased and acetylated p5,p53,GSDMD,and acyl-CoA synthetase long-chain family member 4(ACSL4)protein levels were elevated in human ALF liver tissue.In the p53 and ferroptosis inhibitor-treated and GSDMD^(-/-)groups,serum interleukin(IL)-1β,tumour necrosis factor alpha,IL-6,IL-2 and C-C motif ligand 2 levels were decreased and hepatic impairment was mitigated.In mice with GSDMD knockout,p53 was reduced,GPX4 was increased,and ferroptotic events(depletion of SLC7A11,elevation of ACSL4,and iron accumulation)were detected.In vitro,knockdown of p53 and overexpression of GPX4 reduced AST and ALT levels,the cytostatic rate,and GSDMD expression,restoring SLC7A11 depletion.Moreover,SIRT1 agonist and overexpression of SIRT1 alleviated acute liver injury and decreased iron deposition compared with results in the model group,accompanied by reduced p53,GSDMD,and ACSL4,and increased SLC7A11 and GPX4.Inactivation of SIRT1 exacerbated ferroptotic and pyroptotic cell death and aggravated liver injury in LPS/D-GalNinduced in vitro and in vivo models.CONCLUSION SIRT1 activation attenuates LPS/D-GalN-induced ferroptosis and pyroptosis by inhibiting the p53/GPX4/GSDMD signaling pathway in ALF.
基金Supported by National Natural Science Foundation of China,No.82374449China Postdoctoral Science Foundation,No.2023M731782+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent,No.2022ZB806Jiangsu Province Postgraduate Scientific Research and Innovation Plan,No.KYCX23_2136.
文摘BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,identifying efficient therapeutic modalities for constipation is of paramount importance.Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms.Consequently,we postulate that hydrogen therapy,an emerging and promising intervention,can serve as a safe and efficacious treatment for constipation.AIM To determine whether hydrogen-rich water(HRW)alleviates constipation and its potential mechanism.METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats.Rats freely consumed HRW,and were recorded their 24 h total stool weight,fecal water content,and charcoal propulsion rate.Fecal samples were subjected to 16S rDNA gene sequencing.Serum non-targeted metabolomic analysis,malondialdehyde,and superoxide dismutase levels were determined.Colonic tissues were stained with hematoxylin and eosin,Alcian blue-periodic acid-Schiff,reactive oxygen species(ROS)immunofluorescence,and immunohistochemistry for cell growth factor receptor kit(c-kit),PGP 9.5,sirtuin1(SIRT1),nuclear factor-erythroid-2-related factor 2(Nrf2),and heme oxygenase-1(HO-1).Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1,Nrf2 and HO-1.A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor,EX527,into constipated rats.NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression.RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h,fecal water content,charcoal propulsion rate,thickness of the intestinal mucus layer,c-kit expression,and the number of intestinal neurons.HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism.HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway.This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats.The serum metabolites,β-leucine(β-Leu)and traumatic acid,were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1.CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway,modulating gut microbiota and serum metabolites.β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.
文摘In this editorial,we comment on the article by Zhou et al.The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1(SIRT1)activation in acute liver failure(ALF).ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage,often posing a high risk of mortality.The predominant form of hepatic cell death in ALF involves apoptosis,ferroptosis,autophagy,pyroptosis,and necroptosis.Glutathione peroxidase 4(GPX4)inhibition sensitizes the cell to ferroptosis and triggers cell death,while Gasdermin D(GSDMD)is a mediator of pyroptosis.The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway,bridging the gap between the two processes.The inhibition of p53 elevates the levels of GPX4,reducing the levels of inflammatory and liver injury markers,ferroptotic events,and GSDMDN protein levels.Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction.SIRT1 is a NAD-dependent deacetylase,and its activation attenuates liver injury and inflammation,accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF.SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation,attenuating LPS/D-GalN-induced ALF.
基金supported by the Natural Science Foundation of Hainan Province High-level Talent Project(grant number 820RC644)Innovative Research Projects for Postgraduate Students at Hainan Medical University(grant number HYYS2022B08).
文摘Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.
基金supported by the Zhejiang Province Traditional Chinese Medicine Science and Technology Plan Project under Grant(No.2023ZL140).
文摘Objectives:This study explores the protective effects of glycyrrhizic acid(GA)on sepsis-induced cellular damage and inflammation in acute lung injury(ALI),specifically through the modulation of the sirtuin 1(SIRT1)and high mobility group box 1(HMGB1)pathway.Methods:The study employed two experimental models:lipopolysaccharide(LPS)-induced BEAS-2B human lung epithelial cells and cecal ligation and puncture(CLP)rats,to simulate sepsis conditions.The cell model involved treatments with LPS,GA,control siRNA(si-NC),and SIRT1-specific siRNA(si-SIRT1).Evaluations included cell viability,apoptosis,and cytokine production.In the rat model,treatments included GA and the SIRT1 inhibitor EX527,with assessments on lung tissue damage,inflammation,and protein expression using Western blot and co-immunoprecipitation(Co-IP)analysis.Results:LPS exposure significantly reduced SIRT1 mRNA levels and cell viability in BEAS-2B cells,which effects were reversed by cotreatment with GA and si-NC but negated by si-SIRT1.LPS also induced apoptosis and increased pro-inflammatory cytokines and HMGB1 expression,which were mitigated by GA and si-NC and exacerbated by si-SIRT1.In CLP rats,GA treatment decreased lung tissue damage,inflammatory cytokines,and HMGB1 expression,and enhanced SIRT1 levels.However,these protective effects were reversed when GA was combined with EX527.Conclusion:GA demonstrates significant protective effects against LPS-induced damage and inflammation in lung cells and tissue by modulating the SIRT1-HMGB1 pathway.This suggests that GA could be a potential therapeutic strategy for treating sepsis and related inflammatory conditions.
基金This research was supported by the Shanghai Natural Science Fund(No.21ZR1447500)Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Baoshan Branch Medical Key Specialty Construction Project(No.rbzdzk-2023-001).
文摘Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF.
文摘目的 探讨血清α-突触核蛋白(α-synuclein,α-syn)、沉默调节蛋白1(Sirtuin-1,SIRT1)水平与进展性脑梗死患者神经功能、梗死体积及预后的相关性。方法 回顾性分析100例急性脑梗死病例资料。根据脑梗死病情变化情况,分为进展组(n=45)和非进展组(n=55)。依据入院时美国国立卫生研究院卒中量表(national institute of health stroke scale,NIHSS)评分、梗死体积及预后,对进展组病例进一步亚分组。比较不同神经功能缺损程度、梗死体积和预后结局,进展组病例血清α-syn、SIRT1水平差异及相关性,采用受试者工作特征(receiver operating characteristic,ROC)曲线分析α-syn、SIRT1对进展性脑梗死的诊断及预后预测价值。结果 进展组血清α-syn水平高于非进展组,SIRT1低于非进展组(均P<0.05)。SIRT1与α-syn联合预测进展性脑梗死的ROC曲线下面积(area under curve,AUC)为0.911(0.849~0.973),敏感度和特异度分别为84.38%和82.33%。随着神经功能缺损程度加重,进展性脑梗死患者血清α-syn水平呈现逐渐升高趋势,而SIRT1不断降低(P<0.05)。随着梗死体积增加,进展性脑梗死患者血清α-syn水平不断升高,而SIRT1表现为降低趋势(P<0.05)。与预后良好组比较,预后不良组血清SIRT1水平较低,α-syn水平偏高(P<0.05)。血清α-syn水平与进展性脑梗死患者神经功能缺损程度、梗死体积及预后不良均呈正相关(r=0.713、0.821、0.739,P<0.05)。血清SIRT1水平与进展性脑梗死患者神经功能缺损程度、梗死体积及预后不良均呈负相关(r=-0.694、-0.773,-0.633,P<0.05)。SIRT1与α-syn联合检测预测进展性脑梗死患者预后不良AUC为0.887(0.812~0.963),敏感度87.64%、特异度77.63%。结论 联合检测α-syn与SIRT1水平对预测脑梗死进展情况及预后不良具有较高价值,可为临床提供指导。