期刊文献+
共找到48,106篇文章
< 1 2 250 >
每页显示 20 50 100
d-Orbital steered FeN_(4)moiety through N,S dual-site adjustation for zinc-air flow battery
1
作者 Chunzhu Bao Mingwei Tong +1 位作者 Xueli Li Zhonghua Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期8-15,共8页
The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in s... The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in synergistically regulating their electronic states and structural porosity for the great device performance.Here,we conquer these issues by exploiting N and S co-doped graphene with COP rich in metal-ligand nitrogen to synergistically construct an effective catalyst for oxygen reduction reaction(ORR).Among them,the N and S co-doped sites with high electronegativity properties alter the number of electron occupations in the d orbital of the iron centre and form electron-transfer bridges,thereby boosting the selectivity of the ORR-catalysed four-electron pathway.Meanwhile,the introduction of COP materials aids the formation of pore interstices in the graphene lamellae,which both adequately expose the active sites and facilitate the transport of reactive substances.Benefiting from the synergistic effect,as-prepared catalyst exhibits excellent half-wave potentials(E_(1/2)=912 mV)and stability(merely 8.8%drop after a long-term durability test of 50000 s).Further,ZAFBs assembled with the N/SG@CO_(2)P catalyst demonstrate exceptional power density(163.8 mW cm^(-2))and continuous charge and discharge for approximately 140 h at 10 mA cm^(-2),outperforming the noble-metal benchmarks. 展开更多
关键词 Nitrogen/sulfurdual sites Metal-coordinated nitrogen sites Covalent organic polymer Oxygen reduction reaction Zn-airflow battery
下载PDF
可持续场地倡议(SITES)评价体系在中国城市绿地建设中的研究进展及适用性讨论
2
作者 林广思 朱欣 贺肖淇 《广东园林》 2024年第2期2-6,共5页
建设可持续的城市绿地是风景园林行业实现可持续发展的重要途径。然而,中国目前缺乏指导可持续景观建设的标准体系。可持续场地倡议(SITES)体系的提出和引入为国内相关研究提供了新的切入点。以SITES评价体系为研究对象,概述其起源、主... 建设可持续的城市绿地是风景园林行业实现可持续发展的重要途径。然而,中国目前缺乏指导可持续景观建设的标准体系。可持续场地倡议(SITES)体系的提出和引入为国内相关研究提供了新的切入点。以SITES评价体系为研究对象,概述其起源、主要内容等,明确其在城市绿地项目建设中的应用价值,全面总结了SITES评价体系在国内研究与应用方面的进展,同时深入探讨了其在中国城市绿地建设中的适用性和局限性。SITES在关注“场地”尺度、覆盖全生命周期、设置“门槛”条件以及全球统一标准等方面展现了较强的适用性,然而,在实际应用于中国城市绿地项目时存在一定的局限性,包括SITES标准与国内标准规范的不匹配,分值权重的失衡,缺乏政府相关福利政策支持和推广受限制等问题。 展开更多
关键词 城市绿地 可持续景观 可持续场地倡议(siteS) 景观绩效
下载PDF
Brønsted-acid sites induced photocatalytic cracking of low-polarity polyethylene plastics
3
作者 Qianyou Wen Quan Zhang +6 位作者 Zhengzheng Liu Huining Wang Shuya Hao Fan Zhang Lijuan Zhang Qing Han Gengfeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期509-515,共7页
Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical fun... Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes. 展开更多
关键词 Photocatalytic cracking POLYETHYLENE Surface phosphorylation Bronsted-acid site Carbon conversion
下载PDF
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
4
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 Boreal forests Mechanical site preparation Patch scarification MOUNDING Soil properties Containerised seedlings Bareroot seedlings
下载PDF
Comparison of bone artifacts from the Schöningen site in Germany and the Lingjing site in China
5
作者 WANG Hua LI Zhanyang Thijs van KOLFSCHOTEN 《人类学学报》 CSCD 北大核心 2024年第2期214-232,共19页
Similarities play an important role in the reconstruction of human physical,cultural and technological evolution.The two sites presented in this paper,the Middle Palaeolithic site Lingjing in China Layer 10 and 11 and... Similarities play an important role in the reconstruction of human physical,cultural and technological evolution.The two sites presented in this paper,the Middle Palaeolithic site Lingjing in China Layer 10 and 11 and the Lower Palaeolithic site Schöningen 13Ⅱ-4,the socalled Schöningen Spear Horizon in Germany,show striking similarities.The archaeological record of both sites includes lithic artifacts as well as a very large assemblage of fossil bones.The preservation of the material at both sites is excellent and the faunas encountered at both sites show many similarities.The faunal lists of both sites include a diverse carnivore guild,an elephant species,two different rhinoceros species,two different equids,different cervids and large bovids.Both sites also yielded bone retouchers as well as a unique record of bone hammers that show identical,unusual flaking and percussion damage.These similarities are remarkable if one takes into account the difference in age(ca 200 kaBP)and the geographical distance between the two sites of ca 8000 km.Therefore,we do not assume a close cultural link between the hominin populations active at both sites.The authors assume that the observed similarities show more or less identical,opportunistic hominin behaviour at both sites located in a comparable environment with more or less similar taphonomic conditions. 展开更多
关键词 PALAEOLITHIC open-air sites bone tools Asia EUROPE
下载PDF
Efficient and reversible separation of NH_(3) by deep eutectic solvents with multiple active sites and low viscosities
6
作者 Jiayin Zhang Lu Zheng +4 位作者 Siqi Fang Hongwei Zhang Zhenping Cai Kuan Huang Lilong Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期97-105,共9页
The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)... The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations. 展开更多
关键词 SEPARATION Absorption Ionic liquid Deep eutectic solvent Multiple active site Low viscosity
下载PDF
The suitability assessment on site selection for bottom seeding scallop culture based on analytic hierarchy process
7
作者 Ziniu ZHANG Zhenyan WANG +2 位作者 Guihua LI Meihan ZHAO Wenjian LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期647-663,共17页
Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation o... Scallop culture is an important way of bottom-seeding marine ranching,which is of great significance to improve the current situation of fishery resources.However,there are some problems in site-selection evaluation of marine ranching,such as imperfect criteria system,complex structure,untargeted criteria quantification,etc.In addition,no site-selection evaluation method of bottom-seeding culture areas for scallops is available.Therefore,we established a hierarchy structure model according to the analytic hierarchy process(AHP)theory,in which social,physical,chemical,and biological environments are used as main criteria,and marine functional zonation,water depth,current,water temperature,salinity,substrate type,water quality,sediment quality,red tide,phytoplankton,and zooplankton are used as sub-criteria,on which a multi-parameter evaluation system is set up.Meanwhile,the dualism method,assignment method,and membership function method were used to quantify sub-criteria,and a quantitative evaluation for the entire criteria was added,including the evaluation and analysis of two types of unsuitable environmental situations.By overall consideration in scallop yield,quality,and marine ranching construction objectives,the weight of the main criteria could be determined.Five grades in the suitability corresponding to the evaluation result were divided,and the Python language was used to create an evaluation system for efficient calculation and intuitive presentation of the evaluation outcome.Eight marine cases were simulated based on existing survey data,and the results prove that the method is feasible for evaluating and analyzing the site selection of bottom-seeding culture areas for scallops under various environmental situations.The proposed evaluation method can be promoted for the site selection of bottom-seeding marine ranching.This study provided theoretical and methodological references for the site selection evaluation of other types of marine ranching. 展开更多
关键词 marine ranching bottom-seeding scallops site selection evaluation analytic hierarchy process evaluation system
下载PDF
Quantitative Analysis of Seeing with Height and Time at Muztagh-Ata Site Based on ERA5 Database
8
作者 Xiao-Qi Wu Cun-Ying Xiao +3 位作者 Ali Esamdin Jing Xu Ze-Wei Wang Luo Xiao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第1期87-95,共9页
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal... Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy. 展开更多
关键词 site testing atmospheric effects methods:data analysis telescopes EARTH
下载PDF
Boost the Utilization of Dense FeN_(4) Sites for High-Performance Proton Exchange Membrane Fuel Cells
9
作者 Yanrong Li Shuhu Yin +4 位作者 Long Chen Xiaoyang Cheng Chongtai Wang Yanxia Jiang Shigang Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期398-405,共8页
Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site... Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site density(SD)and site utilization.Herein,we reported a melamine-assisted vapor deposition approach to overcome these hindrances.The melamine not only compensates for the loss of nitrogen caused by high-temperature pyrolysis but also effectively etches the carbon substrate,increasing the external surface area and mesoporous porosity of the carbon substrate.These can provide more useful area for subsequent vapor deposition on active sites.The prepared 0.20Mela-FeNC catalyst shows a fourfold higher SD value and site utilization than the FeNC without the treatment of melamine.As a result,0.20Mela-FeNC catalyst exhibits a high ORR activity with a half-wave potential(E_(1/2))of 0.861 V and 12-fold higher ORR mass activity than the FeNC in acidic media.As the cathode in a H_(2)-O_(2)PEMFCs,0.20Mela-FeNC catalyst demonstrates a high peak power density of 1.30 W cm^(-2),outstripping most of the reported Fe-N-C catalysts.The developed melamine-assisted vapor deposition approach for boosting the SD and utilization of Fe-N-C catalysts offers a new insight into high-performance ORR electrocatalysts. 展开更多
关键词 fuel cells MELAMINE oxygen reduction reaction site density UTILIZATION
下载PDF
Building Fe atom–cluster composite sites using a site occupation strategy to boost electrochemical oxygen reduction
10
作者 Tingyi Zhou Yi Guan +9 位作者 Changjie He Lei Zhang Xueliang Sun Zhongxin Song Qianling Zhang Chuanxin He Xiantao Jiang Zhaoyan Luo Wei Xing Xiangzhong Ren 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期276-286,共11页
The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic ... The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts. 展开更多
关键词 d-band center metal clusters oxygen reduction reaction single-atom catalyst site occupations strategy
下载PDF
Surgical site infection following pancreaticoduodenectomy in a referral cancer center in Mexico
11
作者 Rodrigo Villaseñor-Echavarri Javier Melchor-Ruan +5 位作者 Mercedes Aranda-Audelo Gabriela Arredondo-Saldaña Patricia Volkow-Fernandez Maria del Carmen Manzano-Robleda Alejandro E Padilla-Rosciano Diana Vilar-Compte 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第5期502-508,共7页
Background: Pancreaticoduodenectomy is the standard treatment for resectable periampullary cancer. Surgical site infections(SSI) are common complications with increased morbidity. The study aimed to describe the preva... Background: Pancreaticoduodenectomy is the standard treatment for resectable periampullary cancer. Surgical site infections(SSI) are common complications with increased morbidity. The study aimed to describe the prevalence, risk factors, microbiology, and outcomes of SSI among patients undergoing pancreaticoduodenectomy. Methods: We conducted a retrospective study in a referral cancer center between January 2015 and June 2021. We analyzed baseline patient characteristics and SSI occurrence. Culture results and susceptibility patterns were described. Multivariate logistic regression was used to determine risk factors, proportional hazards model to evaluate mortality, and Kaplan-Meier analysis to assess long-term survival. Results: A total of 219 patients were enrolled in the study;101(46%) developed SSI. Independent factors for SSI were diabetes mellitus, preoperative albumin level, biliary drainage, biliary prostheses, and clinically relevant postoperative pancreatic fistula. The main pathogens were Enterobacteria and Enterococci. Multidrug-resistance rate in SSI was high but not associated with increased mortality. Infected patients had higher odds of sepsis, longer hospital stay and intensive care unit stay, and readmission rate. Neither 30-day mortality nor long-term survival was significantly different between infected and non-infected patients. Conclusions: SSI prevalence among patients undergoing pancreaticoduodenectomy was high and largely caused by resistant microorganisms. Most risk factors were related to preoperative instrumentation of the biliary tree. SSI was associated with greater risk of unfavorable outcomes;however, survival was unaffected. 展开更多
关键词 Surgical site infection PANCREATICODUODENECTOMY Pancreatic cancer Endoscopic biliary drainage Biliary prosthesis
下载PDF
Electrocatalysts with atomic-level site for nitrate reduction to ammonia
12
作者 Shuai Yin Rong Cao +4 位作者 Yifan Han Jiachangli Shang Jing Zhang Wei Jiang Guigao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期642-668,共27页
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such... Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented. 展开更多
关键词 Ammonia synthesis Nitrate reduction Electrocatalysts with atomic-level site Reaction mechanism In-situ characterization techniques
下载PDF
Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction
13
作者 Ruixue Zheng Qinglei Meng +9 位作者 Hao Zhang Teng Li Di Yang Li Zhang Xiaolong Jia Changpeng Liu Jianbing Zhu Xiaozheng Duan Meiling Xiao Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期7-15,I0002,共10页
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat... Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties. 展开更多
关键词 Fe single atom catalysts Oxygen reduction reaction Mesoporous structure Active sites Zinc-air battery
下载PDF
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO_(2) Reduction
14
作者 Kangwang Wang Zhuofeng Hu +8 位作者 Peifeng Yu Alina M.Balu Kuan Li Longfu Li Lingyong Zeng Chao Zhang Rafael Luque Kai Yan Huixia Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期68-84,共17页
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in... We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR. 展开更多
关键词 Quantum efficiency Electronic structure Steric interaction Bridging sites CO_(2)reduction
下载PDF
Performance enhancement and active sites identification of Cu-Cd bimetallic oxide derived catalysts for electrochemical CO_(2) reduction
15
作者 Cai Wang Xin Hu +7 位作者 Bairong Chen Houan Ren Xiaoyu Wang Yilin Zhang Xinyu Chen Yuping Liu Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期50-58,共9页
The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ab... The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation. 展开更多
关键词 CO_(2)reduction Cu-Cd bimetallic Real active sites CO production
下载PDF
Multifunctional catalytic sites regulation of atomic-scale iridium on orthorhombic-CoSe_(2)for high efficiency dual-functional alkaline hydrogen evolution and organic degradation
16
作者 Jingjing Huang Chenglin Zhong +14 位作者 Yanjie Xia Jia Liu Guizhen Li Chao Yang Jiahong Wang Qian Wang Zhenbao Zhang Feng Yan Jianghua Wu Yu Deng Zhenjiang Zhou Xingchen He Paul K.Chu Woon-Ming Lau Xue-Feng Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期271-281,共11页
The earth-abundant and high-performance catalysts are crucial for commercial implementation of hydrogen evolution reaction(HER).Herein,a multifunctional site strategy to construct excellent HER catalysts by incorporat... The earth-abundant and high-performance catalysts are crucial for commercial implementation of hydrogen evolution reaction(HER).Herein,a multifunctional site strategy to construct excellent HER catalysts by incorporating iridium(Ir)ions on the atomic scale into orthorhombic-CoSe2(Ir-CoSe_(2))was reported.Outstanding hydrogen evolution activity in alkaline media such as a low overpotential of 48.7 mV at a current density of 10 mA cm^(-2)and better performance than commercial Pt/C catalysts at high current densities were found in the Ir-CoSe_(2) samples.In the experiments and theoretical calculations,it was revealed that Ir enabled CoSe_(2)to form multifunctional sites to synergistically catalyze alkaline HER by promoting the adsorption and dissociation of H_(2)O(Ir sites)and optimizing the binding energy for H^(*)on Co sites.It was noticeable that the electrolytic system comprising the Ir-CoSe_(2)electrode not only produced hydrogen efficiently via HER,but also degraded organic pollutants(Methylene blue).The cell voltage of the dual-function electrolytic system was 1.58 V at the benchmark current density of 50 mA cm^(-2),which was significantly lower than the conventional water splitting voltage.It was indicated that this method was a novel strategy for designing advanced HER electrocatalysts by constructing multifunctional catalytic sites for hydrogen production and organic degradation. 展开更多
关键词 Orthorhombic-CoSe_(2) Multifunctional sites design Hydrogen evolution reaction Synergistically catalyze Methylene blue oxidation
下载PDF
Fe-N_(x) sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries
17
作者 Katam Srinivas Zhuo Chen +3 位作者 Anran Chen Fei Ma Ming-qiang Zhu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期565-577,I0013,共14页
The development of efficient single-atom catalysts(SACs) for the oxygen reduction reaction(ORR)remains a formidable challenge,primarily due to the symmetric charge distribution of metal singleatom sites(M-N_(4)).To ad... The development of efficient single-atom catalysts(SACs) for the oxygen reduction reaction(ORR)remains a formidable challenge,primarily due to the symmetric charge distribution of metal singleatom sites(M-N_(4)).To address such issue,herein,Fe-N_(x) sites coupled synergistic catalysts fabrication strategy is presented to break the uniform electronic distribution,thus enhancing the intrinsic catalytic activity.Precisely,atomically dispersed Fe-N_(x) sites supported on N/S-doped mesoporous carbon(NSC)coupled with FeS@C core-shell nanoparticles(FAS-NSC@950) is synthesized by a facile hydrothermal reaction and subsequent pyrolysis.Due to the presence of an in situ-grown conductive graphitic layer(shell),the FeS nanoparticles(core) effectively adjust the electronic structure of single-atom Fe sites and facilitate the ORR kinetics via short/long-range coupling interactions.Consequently,FAS-NSC@950displays a more positive half-wave potential(E_(1/2)) of 0.871 V with a significantly boosted ORR kinetics(Tafel slope=52.2 mV dec^(-1)),outpacing the commercial Pt/C(E_(1/2)=0.84 V and Tafel slope=54.6 mV dec^(-1)).As a bifunctional electrocatalyst,it displays a smaller bifunctional activity parameter(ΔE) of 0.673 V,surpassing the Pt/C-RuO_(2) combination(ΔE=0.724 V).Besides,the FAS-NSC@950-based zincair battery(ZAB) displays superior power density,specific capacity,and long-term cycling performance to the Pt/C-Ir/C-based ZAB.This work significantly contributes to the field by offering a promising strategy to enhance the catalytic activity of SACs for ORR,with potential implications for energy conversion and storage technologies. 展开更多
关键词 Fe-N_(x)sites Core-shell FeS@C Synergistic interactions Oxygen reduction reaction Zn-air battery
下载PDF
Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO_(2) methanation:Synergistic catalysis of Ni and Co species
18
作者 Zonglin Li Jianjun Chen +8 位作者 Yu Xie Junjie Wen Huiling Weng Mingxue Wang Jingyi Zhang Jinyan Cao Guocai Tian Qiulin Zhang Ping Ning 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期213-225,共13页
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s... An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance. 展开更多
关键词 Zonal activation CO_(2) methanation Dual active sites Synergistic effect
下载PDF
Pd^(0)-O v-Ce^(3+) Interfacial Sites with Charge Redistribution for Enhanced Hydrogenation of Methyl Oleate to Methyl Stearate
19
作者 Zhaohui Meng Ying Liao +6 位作者 Ling Liu Yaqian Li Hao Yan Xiang Feng Xiaobo Chen Yibin Liu Chaohe Yang 《Transactions of Tianjin University》 EI CAS 2024年第4期359-368,共10页
Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(... Improving the efficiency of metal/reducible metal oxide interfacial sites for hydrogenation reactions of unsaturated groups(e.g.,C=C and C=O)is a promising yet challenging endeavor.In our study,we developed a Pd/CeO_(2) catalyst by enhancing the oxygen vacancy(O V)concentration in CeO_(2) through high-temperature treatment.This process led to the formation of an interface structure ideal for supporting the hydrogenation of methyl oleate to methyl stearate.Specifi cally,metal Pd^(0) atoms bonded to the O V in defective CeO_(2) formed Pd^(0)-O v-Ce^(3+)interfacial sites,enabling strong electron transfer from CeO_(2) to Pd.The interfacial sites exhibit a synergistic adsorption eff ect on the reaction substrate.Pd^(0) sites promote the adsorption and activation of C=C bonds,while O V preferably adsorbs C=O bonds,mitigating competition with C=C bonds for Pd^(0) adsorption sites.This synergy ensures rapid C=C bond activation and accelerates the attack of active H*species on the semi-hydrogenated intermediate.As a result,our Pd/CeO_(2)-500 catalyst,enriched with Pd^(0)-O v-Ce^(3+)interfacial sites,dem-onstrated excellent hydrogenation activity at just 30℃.The catalyst achieved a Cis-C18:1 conversion rate of 99.8% and a methyl stearate formation rate of 5.7 mol/(h·g metal).This work revealed the interfacial sites for enhanced hydrogenation reactions and provided ideas for designing highly active hydrogenation catalysts. 展开更多
关键词 HYDROGENATION Interfacial sites Oxygen vacancy C=C bond
下载PDF
Numerical analysis on seismic performance of underground structures in liquefiable interlayer sites from centrifuge shaking table test
20
作者 Yan Guanyu Xu Chengshun +2 位作者 Zhang Zihong Du Xiuli Wang Xuelai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期781-798,共18页
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response... When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site. 展开更多
关键词 centrifuge shaking table test underground structure liquefiable interlayer sites seismic response validation of numerical model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部