期刊文献+
共找到166篇文章
< 1 2 9 >
每页显示 20 50 100
Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO_(2) methanation:Synergistic catalysis of Ni and Co species
1
作者 Zonglin Li Jianjun Chen +8 位作者 Yu Xie Junjie Wen Huiling Weng Mingxue Wang Jingyi Zhang Jinyan Cao Guocai Tian Qiulin Zhang Ping Ning 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期213-225,共13页
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s... An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance. 展开更多
关键词 Zonal activation CO_(2) methanation Dual active sites Synergistic effect
下载PDF
Efficient and reversible separation of NH_(3) by deep eutectic solvents with multiple active sites and low viscosities
2
作者 Jiayin Zhang Lu Zheng +4 位作者 Siqi Fang Hongwei Zhang Zhenping Cai Kuan Huang Lilong Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期97-105,共9页
The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)... The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations. 展开更多
关键词 SEPARATION ABSORPTION Ionic liquid Deep eutectic solvent Multiple active site Low viscosity
下载PDF
Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction
3
作者 Ruixue Zheng Qinglei Meng +9 位作者 Hao Zhang Teng Li Di Yang Li Zhang Xiaolong Jia Changpeng Liu Jianbing Zhu Xiaozheng Duan Meiling Xiao Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期7-15,I0002,共10页
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat... Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties. 展开更多
关键词 Fe single atom catalysts Oxygen reduction reaction Mesoporous structure Active sites Zinc-air battery
下载PDF
Performance enhancement and active sites identification of Cu-Cd bimetallic oxide derived catalysts for electrochemical CO_(2) reduction
4
作者 Cai Wang Xin Hu +7 位作者 Bairong Chen Houan Ren Xiaoyu Wang Yilin Zhang Xinyu Chen Yuping Liu Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期50-58,共9页
The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ab... The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation. 展开更多
关键词 CO_(2)reduction Cu-Cd bimetallic Real active sites CO production
下载PDF
Strain‑Induced Surface Interface Dual Polarization Constructs PML‑Cu/Bi_(12)O_(17)Br_(2) High‑Density Active Sites for CO_(2) Photoreduction
5
作者 Yi Zhang Fangyu Guo +6 位作者 Jun Di Keke Wang Molly Meng‑Jung Li Jiayu Dai Yuanbin She Jiexiang Xia Huaming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期169-183,共15页
The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging.... The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging.Herein,strain-induced strategy is developed to construct the Bi–O-bonded interface in Cu porphyrin-based monoatomic layer(PML-Cu)and Bi_(12)O_(17)Br_(2)(BOB),which triggers the surface interface dual polarization of PML-Cu/BOB(PBOB).In this multi-step polarization,the built-in electric field formed between the interfaces induces the electron transfer from con-duction band(CB)of BOB to CB of PML-Cu and suppresses its reverse migration.Moreover,the surface polarization of PML-Cu further promotes the electron converge in Cu atoms.The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB,significantly promoting the adsorption and activation of CO_(2) and CO desorption.The conversion rate of CO_(2) photoreduction to CO for PBOB can reach 584.3μmol g-1,which is 7.83 times higher than BOB and 20.01 times than PML-Cu.This work offers valuable insights into multi-step polarization regulation and active site design for catalysts. 展开更多
关键词 Bi_(12)O_(17)Br_(2) Porphyrin CO_(2)photoreduction Polarization Active sites
下载PDF
A Review of In‑Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions 被引量:4
6
作者 Jinyu Zhao Jie Lian +2 位作者 Zhenxin Zhao Xiaomin Wang Jiujun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期61-113,共53页
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco... Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed. 展开更多
关键词 Oxygen reduction reaction Catalysts In-situ techniques Active sites MECHANISMS
下载PDF
Stable NiPt-Mo_(2)C active site pairs enable boosted water splitting and direct methanol fuel cell
7
作者 Jing Li Zhu Guo +3 位作者 Wenjie Zhang Jing Guo Konggang Qu Weiwei Cai 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期559-566,共8页
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect... Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers. 展开更多
关键词 Hydrogen evolution reaction Methanol oxidation reaction Direct methanol fuel cell Active site pair Self-confinement
下载PDF
Accurate design of spatially separated double active site in Bi_(4)NbO_(8)Cl single crystal to promote Z-Scheme photocatalytic overall water splitting
8
作者 Kailong Gao Hongxia Guo +4 位作者 Yanan Hu Hongbin He Mowen Li Xiaoming Gao Feng Fu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期568-582,I0014,共16页
The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction wa... The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system. 展开更多
关键词 Spatially separated double active sites FeCoPi/Bi_(4)NbO_(8)Cl-OVs Photocatalytic water oxidation Photocatalytic hydrogen evolution Hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3) Z-Scheme photocatalytic overall water splitting system
下载PDF
Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules
9
作者 Wei Guo Linhui Yu +2 位作者 Ling Tang Yan Wan Yangming Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期74-97,共24页
Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Ov... Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work. 展开更多
关键词 Metal-free carbon catalysts Model catalyst ELECTROCATALYSIS Active site Reaction mechanisms
下载PDF
Fe-N-C core-shell catalysts with single low-spin Fe(Ⅱ)-N_(4)species for oxygen reduction reaction and high-performance proton exchange membrane fuel cells
10
作者 Yan Wan Linhui Yu +5 位作者 Bingxin Yang Caihong Li Chen Fang Wei Guo Fang-Xing Xiao Yangming Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期538-546,I0013,共10页
Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(... Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(4)moiety with different chemical/spin states(e.g.D1,D2,D3)to ORR are unclear since various states coexist inevitably.In the present work,Fe-N-C core-shell nanocatalyst with single lowspin Fe(Ⅱ)-N_(4)species(D1)is synthesized and identified with ex-situ ultralow temperature Mossbauer spectroscopy(T=1.6 K)that could essentially differentiate various Fe-N_(4)states and invisible Fe-O species.By quantifying with CO-pulse chemisorption,site density and turnover frequency of Fe-N-C catalysts reach 2.4×10^(-9)site g^(-1)and 23 e site~(-1)s^(-1)during the ORR,respectively.Half-wave potential(0.915V_(RHE))of the Fe-N-C catalyst is more positive(approximately 54 mV)than that of Pt/C.Moreover,we observe that the performance of PEMFCs on Fe-N-C almost achieves the 2025 target of the US Department of Energy by demonstrating a current density of 1.037 A cm^(-2)combined with the peak power density of 0,685 W cm^(-2),suggesting the critical role of Fe(Ⅱ)-N_(4)site(D1).After 500 h of running,PEMFCs still deliver a power density of 1.26 W cm^(-2)at 1.0 bar H_(2)-O_(2),An unexpected rate-determining step is figured out by isotopic labelling experiment and theoretical calculation.This work not only offers valuable insights regarding the intrinsic contribution of Fe-N_(4)with a single spin state to alkaline/acidic ORR,but also provides great opportunities for developing high-performance stable PEMFCs. 展开更多
关键词 Fuel cells Oxygen reduction reaction Non-platinum group metals(PGMs) Isotopic labelling Active site TOF
下载PDF
CoN_(x)C active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries 被引量:6
11
作者 Wenming Zhang Jingjing Chu +2 位作者 Shifeng Li Yanan Li Ling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期323-332,共10页
In this work, a CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs is prepared via a nucleation growth strategy and a pyrolysis process.The mat... In this work, a CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs is prepared via a nucleation growth strategy and a pyrolysis process.The material displays excellent electrocatalytic activity for the oxygen reduction reaction, reaching a high limiting diffusion current density of -7.8 mA cm^(-2), outperforming metal–organic frameworks derived multifunctional electrocatalysts, and oxygen evolution reaction and hydrogen evolution reaction with low overpotentials of 380 and 107 mV, respectively. When the electrochemical properties are further evaluated, the electrocatalyst as an air cathode for Zn-air batteries exhibits a high cycling stability for63 h as well as a maximum power density of 308 mW cm^(-2), which is better than those for most Zn-air batteries reported to date. In addition, a power density of 152 mW cm^(-2) is provided by the solid-state Zn-air batteries, and the cycling stability is outstanding for 24 h. The remarkable electrocatalytic properties are attributed to the synergistic effect of the 3 D porous carbon nanofibers network and abundant inserted CoNxC active sites, which enable the fast transmission of ions and mass and simultaneously provide a large contact area for the electrode/electrolyte. 展开更多
关键词 Bacterial cellulose Bimetal-ZIFs CoNxC active sites 3D nitrogen-doped porous carbon nanofiber Zn-air batteries
下载PDF
In-situ/operando techniques to identify active sites for thermochemical conversion of CO_(2) over heterogeneous catalysts 被引量:5
12
作者 Kai Feng Yaning Wang +5 位作者 Man Guo Jingpeng Zhang Zhengwen Li Tianyu Deng Zhihe Zhang Binhang Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期153-171,I0004,共20页
The catalytic conversion of CO_(2) to fuels or chemicals is considered to be an effective pathway to mitigate the greenhouse effect. To develop new types of efficient and durable catalysts, it is critical to identify ... The catalytic conversion of CO_(2) to fuels or chemicals is considered to be an effective pathway to mitigate the greenhouse effect. To develop new types of efficient and durable catalysts, it is critical to identify the catalytic active sites, surface intermediates, and reaction mechanisms to reveal the relationship between the active sites and catalytic performance. However, the structure of a heterogeneous catalyst usually dynamically changes during reaction, bringing a great challenge for the identification of catalytic active sites and reaction pathways. Therefore, in-situ/operando techniques have been employed to real-time monitor the dynamic evolution of the structure of active sites under actual reaction conditions to precisely build the structure–function relationship. Here, we review the recent progress in the application of various in-situ/operando techniques in identifying active sites for catalytic conversion of CO_(2) over heterogeneous catalysts. We systematically summarize the applications of various optical and X-ray spectroscopy techniques, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), in identifying active sites and determining reaction mechanisms of the CO_(2) thermochemical conversion with hydrogen and light alkanes over heterogeneous catalysts. Finally, we discuss challenges and opportunities for the development of in-situ characterization in the future to further enlarge the capability of these powerful techniques. 展开更多
关键词 In-situ characterization Spectroscopy techniques Active sites CO_(2)conversion Heterogeneous catalysis
下载PDF
Determination of structure-activity relationships between fentanyl analogs and human μ-opioid receptors based on active binding site models 被引量:3
13
作者 Ming Liu Xiaoli Liu +2 位作者 Ping Wan Qiangsan Wu Wenxiang Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第4期267-276,共10页
Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison o... Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective IJ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SitelD showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TMT. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution. 展开更多
关键词 μ-opioid receptor fentanyl analogs AGONIST active site structure-activity relationship
下载PDF
Study on the active sites of Cu-ZSM-5 in trichloroethylene catalytic combustion with air 被引量:2
14
作者 Cheng Hua Xu Chuan Qi Liu Yan Zhong Xiu Zhou Yang Jian Ying Liu Ying Chun Yang Zhi Xiang Ye 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第11期1387-1390,共4页
The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO, which is detected by infrar... The catalytic activity of Cu-ZSM-5 in trichloroethylene (TCE) combustion increases with the increasing skeletal Cu amount and however decreases with the increase of surface amorphous CuO, which is detected by infrared spectroscopy (IR) and diffuse reflectance ultraviolet-visible spectroscopy (DRS-UV-vis), therefore the skeletal Cu species are concluded to be the active sites for the TCE combustion. 展开更多
关键词 CU-ZSM-5 Active sites TRICHLOROETHYLENE Catalytic combustion
下载PDF
Enhanced performance in the direct electrocatalytic synthesis of ammonia from N2 and H2O by an in-situ electrochemical activation of CNT-supported iron oxide nanoparticles 被引量:2
15
作者 Shiming Chen Siglinda Perathoner +4 位作者 Claudio Ampelli Hua Wei Salvatore Abate Bingsen Zhang Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期22-32,共11页
The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse ga... The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances. 展开更多
关键词 Ammonia direct synthesis Electrochemical activation Heterogeneous catalysis Active sites N2 electrocatalytic conversion
下载PDF
Boosting the oxygen evolution reaction through migrating active sites from the bulk to surface of perovskite oxides 被引量:2
16
作者 Zhengsen Wang Ziyi Hao +3 位作者 Fang Shi Kaiyue Zhu Xuefeng Zhu Weishen Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期434-441,I0012,共9页
The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER pr... The oxygen evolution reaction (OER) dominates the efficiency of electrocatalytic water splitting owing to its sluggish kinetics.Perovskite oxides (ABO_(3)) have emerged as promising candidates to accelerate the OER process owing to their high intrinsic activities and tailorable properties.Fe ions in perovskite oxides have been proved to be a highly catalytic element for OER,while some Fe-based perovskites such as SrTi_(0.8)Fe_(0.2)O_(3-δ)(STF) and La_(0.66)Ti_(0.8)Fe_(0.2)O_(3-δ)(LTF) exhibit inferior OER activity.Yet the essential reason is still unclear and the effective method to promote the activity of such perovskite is also lacking.Herein,an in-situ exsolution strategy was proposed to boost the OER by migrating Fe from the bulk to the surface.Significantly enhanced OER activity was achieved on STF and LTF perovskites with surfacedecorated oxygen vacancies and Fe nanoparticles.In addition,theoretical calculation confirmed that the oxygen vacancies and Fe nanoparticle on surface could lower the overpotential of OER by facilitating the adsorption of OH^(-).From this study,migration of the active elements in perovskite is found to be an effective strategy to increase the quantity and activity of active sites,providing new insights and understanding for designing efficient OER catalysts. 展开更多
关键词 Oxygen evolution reaction(OER) Perovskite oxides Oxygen vacancy Fe nanoparticles Migration of active site
下载PDF
Ultra-deep adsorptive removal of thiophenic sulfur compounds from FCC gasoline over the specific active sites of CeHY zeolite 被引量:2
17
作者 Yun Zu Chang Zhang +5 位作者 Yucai Qin Xiaotong Zhang Li Zhang Honghai Liu Xionghou Gao Lijuan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期256-267,共12页
Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed ... Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevating higher quality of FCC gasoline in the future. 展开更多
关键词 CeHY zeolite Active sites Thiophenic sulfur com pounds Adsorption desulfurization Oligomerization ability In situ FT-1R spectroscopy
下载PDF
Single-Atom Pd–N_(3)Sites on Carbon-Defi cient g-C_(3)N_(4)for Photocatalytic H_(2)Evolution 被引量:2
18
作者 Guimei Liu Haiqin Lv +4 位作者 Yubin Zeng Mingzhe Yuan Qingguo Meng Yuanhao Wang Chuanyi Wang 《Transactions of Tianjin University》 EI CAS 2021年第2期139-146,共8页
Photocatalytic hydrogen evolution is an attractive fi eld for future environment-friendly energy.However,fast recombination of photogenerated charges severely inhibits hydrogen effi ciency.Single-atom cocatalysts such... Photocatalytic hydrogen evolution is an attractive fi eld for future environment-friendly energy.However,fast recombination of photogenerated charges severely inhibits hydrogen effi ciency.Single-atom cocatalysts such as Pt have emerged as an eff ective method to enhance the photocatalytic activity by introduction of active sites and boosting charge separation with low-coordination environment.Herein,we demonstrated a new strategy to develop a highly active Pd single atom in carbondefi cient g-C_(3)N_(4)with a unique coordination.The single-atom Pd–N_(3)sites constructed by oil bath heating and photoreduction process were confi rmed by HADDF-STEM and XPS measurements.Introduction of single-atom Pd greatly improved the separation and transportation of charge carriers,leading to a longer lifespan for consequent reactions.The obtained singleatom Pd loaded on the carbon-defi cient g-C_(3)N_(4)showed excellent photocatalytic activity in hydrogen production with about 24 and 4 times higher activity than that of g-C_(3)N_(4)and nano-sized Pd on the same support,respectively.This work provides a new insight on the design of single-atom catalyst. 展开更多
关键词 SINGLE-ATOM PD g-C_(3)N_(4) Active sites HYDROGEN PHOTOCATALYTIC
下载PDF
Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol 被引量:3
19
作者 Minjian Pan Jingnan Wang +7 位作者 Wenzhao Fu Bingxu Chen Jiaqi Lei Wenyao Chen Xuezhi Duan De Chen Gang Qian Xinggui Zhou 《Green Energy & Environment》 CSCD 2020年第1期76-82,共7页
Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and p... Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and products formation from the oxidation of the primary and the secondary hydroxyl groups are understood by combining the model calculations and DFT calculations, aiming to discriminate the corresponding dominant Pt active sites. The Pt(100) facet is demonstrated to be the dominant active sites for the glycerol conversion and the products formation from the two routes. The insights revealed here could shed new light on fundamental understanding of the Pt particle size effects and then guiding the design and optimization of Pt-catalyzed base-free oxidation of glycerol toward targeted products. 展开更多
关键词 Base-free oxidation of glycerol Pt/CNTs catalyst Active sites Model calculations DFT calculations
下载PDF
Intrinsic properties of active sites for hydrogen production from alcohols without coke formation 被引量:1
20
作者 Zhong He Xianqin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期436-445,共10页
The detailed reaction pathway and coke formation mechanism over Pt/metal oxide nanoparticles during the steam reforming of ethanol (SRE) at 300℃ were studied. The catalysts were prepared by incipient wetness impreg... The detailed reaction pathway and coke formation mechanism over Pt/metal oxide nanoparticles during the steam reforming of ethanol (SRE) at 300℃ were studied. The catalysts were prepared by incipient wetness impregnation method and were characterized with CO pulse chemisorption, BET surface measurement, oxygen adsorption, ethanol-TPD, NH3-TPD, and TPO. The SRE activity of the catalysts with steam/ethanol molar ratio of 3/1 was tested using a continuous fixed-bed reactor. Strong interaction between Pt and supports causes lower H2 production temperatures and no C2H4 formation, while weak interaction leads to C2H4 formation and strong bonded CO on Pt particles during ethanol- TPD. H2 production over Pt-based catalysts is mainly resulted from the decomposition and dehydrogenation of ethanol, and decarbonylation of acetaldehyde. Meanwhile, coke can be formed from acetaldehyde, acetone, C2H4 and CO. However, when the interaction between Pt and supports is weak, more coke is formed especially from acetone, C2H4 and CO. When the interaction is strong, no coke formation is observed due to high oxygen storage capacity of the catalyst. 展开更多
关键词 active sites HYDROGEN ALCOHOLS coke formation Pt INTERACTION
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部