Two methods currently available for evaluating the probability of Multiple Site Damage(MSD)occurrence were studied in this paper.One of the methods is a probabilistic analysis approach based on the statistical theory ...Two methods currently available for evaluating the probability of Multiple Site Damage(MSD)occurrence were studied in this paper.One of the methods is a probabilistic analysis approach based on the statistical theory and fatigue characteristics of each structural detail,and the other is an approach which defines the initial damage scenario by means of Monte-Carlo simulation,and multiple initial crack scenarios are randomly generated.A modified method based on the Monte-Carlo simulation was proposed in this paper,in which the random fluctuation of the stress was considered to give more accurate evaluation results.In the presented method,the probability of MSD occurrence in a structural element containing multiple details was calculated based on the Monte-Carlo simulation and the p-S-N curve of a single structural detail.Fatigue tests were accomplished using specimens containing 21-similar-details to obtain the fatigue life corresponding to MSD occurrence.Tests on single-detail specimens and static calibration tests were also conducted to get the basic fatigue properties of the material and the degree of stress fluctuation.The aforementioned three methods were compared and validated via the test results.The influence of the stress random fluctuation degree on the probability of MSD occurrence and influence of the distribution types on evaluating the MSD occurrence probability were discussed.展开更多
Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of o...Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of optics in high fluence laser systems. However, the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge, which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics. In this work, the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica. The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Speeifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics. The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail展开更多
One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser i...One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail.展开更多
Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in yo...Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in young and middle age men(Kobeissy,2015).Axon transection,or axotomy,occurs in wounds and during surgery.展开更多
While the present structural integrity evaluation method is based on the philosophy of assumed similitude, Fatigue and Damage Tolerance(F&DT) evaluations for next generation of air-vehicles require high-fidelity p...While the present structural integrity evaluation method is based on the philosophy of assumed similitude, Fatigue and Damage Tolerance(F&DT) evaluations for next generation of air-vehicles require high-fidelity physical models within cyberspace. To serve the needs of F&DT evaluation in digital twin paradigm, a fatigue damage-cumulative model within peridynamic framework is proposed in this paper. Based on the concept of fatigue element block and damage accumulation law in form of Coffin-Manson relationship, the proposed model applies to both fatigue crack initiation and fatigue crack growth;fatigue crack growth rates under constant-amplitude and simple variable-amplitude block loading cases can be well predicted for three common structural materials without inputs of Paris law parameters. Additionally, the proposed model can also be easily extended to a probabilistic version;for verification, multiple-site-damage problems are simulated and the statistic nature of fatigue process in experiments can be well captured. In the end, main features of the proposed model are summarized, and distinctions from the other models are discussed. There may be a potential for the peridynamic damage-cumulative model proposed in this work to numerically predict fatigue problems in digital twin paradigm for future generations of aerospace vehicles.展开更多
文摘Two methods currently available for evaluating the probability of Multiple Site Damage(MSD)occurrence were studied in this paper.One of the methods is a probabilistic analysis approach based on the statistical theory and fatigue characteristics of each structural detail,and the other is an approach which defines the initial damage scenario by means of Monte-Carlo simulation,and multiple initial crack scenarios are randomly generated.A modified method based on the Monte-Carlo simulation was proposed in this paper,in which the random fluctuation of the stress was considered to give more accurate evaluation results.In the presented method,the probability of MSD occurrence in a structural element containing multiple details was calculated based on the Monte-Carlo simulation and the p-S-N curve of a single structural detail.Fatigue tests were accomplished using specimens containing 21-similar-details to obtain the fatigue life corresponding to MSD occurrence.Tests on single-detail specimens and static calibration tests were also conducted to get the basic fatigue properties of the material and the degree of stress fluctuation.The aforementioned three methods were compared and validated via the test results.The influence of the stress random fluctuation degree on the probability of MSD occurrence and influence of the distribution types on evaluating the MSD occurrence probability were discussed.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010J045)the National Natural Science Fundation of China and the China Academy of Engineering Physics United Foundation (NSAF) (Grant No. 11076008)the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806)
文摘Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of optics in high fluence laser systems. However, the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge, which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics. In this work, the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica. The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Speeifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics. The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2008AA8040508)the Youth Foundation of University of Science and Technology of China (Grant Nos.L08010401JX0834 and L08010401JX0806)the Fundamental Research Funds for the Central Universities of China
文摘One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail.
基金Supported by the Ministry of Education and Science of Russia grants 6.4951.2017/6.7 and 6.6З24.2017/8.9
文摘Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in young and middle age men(Kobeissy,2015).Axon transection,or axotomy,occurs in wounds and during surgery.
基金supported by the National Natural Science Foundation of China (No. 11672012)。
文摘While the present structural integrity evaluation method is based on the philosophy of assumed similitude, Fatigue and Damage Tolerance(F&DT) evaluations for next generation of air-vehicles require high-fidelity physical models within cyberspace. To serve the needs of F&DT evaluation in digital twin paradigm, a fatigue damage-cumulative model within peridynamic framework is proposed in this paper. Based on the concept of fatigue element block and damage accumulation law in form of Coffin-Manson relationship, the proposed model applies to both fatigue crack initiation and fatigue crack growth;fatigue crack growth rates under constant-amplitude and simple variable-amplitude block loading cases can be well predicted for three common structural materials without inputs of Paris law parameters. Additionally, the proposed model can also be easily extended to a probabilistic version;for verification, multiple-site-damage problems are simulated and the statistic nature of fatigue process in experiments can be well captured. In the end, main features of the proposed model are summarized, and distinctions from the other models are discussed. There may be a potential for the peridynamic damage-cumulative model proposed in this work to numerically predict fatigue problems in digital twin paradigm for future generations of aerospace vehicles.