Based on the concept of site characteristic and site spirit,by taking the Residential Community of the Fifth Agricultural Construction Division in Bole City of Xinjiang Uygur Autonomous Region for example,the paper ha...Based on the concept of site characteristic and site spirit,by taking the Residential Community of the Fifth Agricultural Construction Division in Bole City of Xinjiang Uygur Autonomous Region for example,the paper has analyzed its background and general situation,and the site characteristic,and emphasized that its planning and design should manifest the comfortable and cozy environment of the residential community,army culture unique in the Fifth Agricultural Division of Xinjiang Crops,and its enterprising spirit.It has pointed out the design should highlight people orientation;stress the quality of living environment;emphasize the individuality of the residential community;combine new technologies;respect the sunshine,terrain and waterscape of the site;well deal with the spatial location of the site;and pay attention to the inheritance of historical culture in the site,so as to create a high-grade residential community integrating army crops feature and water style,with complete supporting facilities,and in possession of unique sharing space,broad landscape avenue and wide building span.展开更多
Near-fault ground motions, potentially with large amplitude and typical velocity pulses, may significantly impact the performance of a wide range of structures. The current study is aimed at evaluating the safety impl...Near-fault ground motions, potentially with large amplitude and typical velocity pulses, may significantly impact the performance of a wide range of structures. The current study is aimed at evaluating the safety implications of the near-fault effect on nuclear power plant facilities designed according to the Chinese code. To this end, a set of near- fault ground motions at rock sites with typical forward-directivity effect is examined with special emphasis on several key parameters and response spectra. Spectral comparison of the selected records with the Chinese and other code design spectra was conducted. The bi-normalized response spectra in terms of different comer periods are utilized to derive nuclear design spectra. It is concluded that nuclear design spectra on rock sites derived from typical rupture directivity records are significantly influenced both by the earthquake magnitude and the rupture distance. The nuclear design spectra specified in the code needs to be adjusted to reflect the near-fault directivity effect of large earthquakes.展开更多
Newmark design spectra have been implemented in many building codes, especially in building codes for critical structures. Previous studies show that Newmark design spectra exhibit lower amplitudes at high frequencies...Newmark design spectra have been implemented in many building codes, especially in building codes for critical structures. Previous studies show that Newmark design spectra exhibit lower amplitudes at high frequencies and larger amplitudes at low frequencies in comparison with spectra developed by statistical methods. To resolve this problem, this study considers three suites of ground motions recorded at three types of sites. Using these ground motions, influences of the shear-wave velocity, earthquake magnitudes, source-to-site distances on the ratios of ground motion parameters are studied, and spectrum amplification factors are statistically calculated. Spectral bounds for combinations of three site categories and two cases of earthquake magnitudes are estimated. Site design spectrum coefficients for the three site categories considering earthquake magnitudes are established. The problems of Newmark design spectra could be resolved by using the site design spectrum coefficients to modify the spectral values of Newmark design spectra in the acceleration sensitive, velocity sensitive, and displacement sensitive regions.展开更多
The paper tends to make an empirical analysis on the experimental site of new countryside construction of Xianhong in Hubei, pointing out that the inner and outer dependence on routines of experimental construction. T...The paper tends to make an empirical analysis on the experimental site of new countryside construction of Xianhong in Hubei, pointing out that the inner and outer dependence on routines of experimental construction. The paper also puts forward the beneficial policies, focusing on the agricultural production and fostering professional farmers, to reduce much dependence on routines.展开更多
In accordance with the principle of similarity in geology and topography, the Vs^30 (the average shear-velocity down to a 30m depth below the surface) approximation of sites is acquired by correlation between Vs^30 ...In accordance with the principle of similarity in geology and topography, the Vs^30 (the average shear-velocity down to a 30m depth below the surface) approximation of sites is acquired by correlation between Vs^30 and slopes after calculating the maximum slope of topography using the 30-sec Chinese Mainland DEM (Digital Elevation Model) data set. Site-amplification factors are then quantified with Vs^30 and applied to the ShakeMap system developed by this study to revise ground-motion amplitudes on bedrock estimated from empirical relationships. Finally, the distribution of ground motion parameters on the surface is obtained. This article also introduces the calculation process, calculation models of the ShakeMap systems and related software systems. In conclusion, certain examples indicate that the ShakeMap system is feasible in the Chinese Mainland.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
Results are reported on a research for the radioactive level in the investigation region and the control region around the Xinjiang Nuclear Testing Site from 1982 to 1987. There are no significant differences on the l...Results are reported on a research for the radioactive level in the investigation region and the control region around the Xinjiang Nuclear Testing Site from 1982 to 1987. There are no significant differences on the land γ radiation level, nor in the radioactive level in the soil, food and water between the two regions. The distribution and transfer of 90Sr, 137Cs and Pu in various kinds of soil are also discussed. It is estimated that the effective dose equivalent of radiation, undergone by the residents around the Testing Site is only 2.9% of that of natural radiation taken yearly by people in normal areas.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrog...With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrogen(H_(2))injection is crucial for UHS success and safety.Recent criteria for UHS often emphasize economics and chemistry,neglecting key reservoir attributes.This study introduces a comprehensive framework for the reservoir-scale preliminary assessment,specifically tailored for long-term H_(2) storage within depleted gas reservoirs.The evaluation criteria encompass critical components,including reservoir geometry,petrophysical properties,tectonics,and formation fluids.To illustrate the practical application of this approach,we assess the Barnett shale play reservoir parameters.The assessment unfolds through three key stages:(1)A systematic evaluation of the reservoir's properties against our comprehensive screening criteria determines its suitability for H_(2) storage.(2)Using both homogeneous and multilayered gas reservoir models,we explore the feasibility and efficiency of H_(2) storage.This phase involves an in-depth examination of reservoir behavior during the injection stage.(3)To enhance understanding of UHS performance,sensitivity analyses investigate the impact of varying reservoir dimensions and injection/production pressures.The findings reveal the following:(a)Despite potential challenges associated with reservoir compaction and aquifer support,the reservoir exhibits substantial promise as an H_(2) storage site.(b)Notably,a pronounced increase in reservoir pressure manifests during the injection stage,particularly in homogeneous reservoirs.(c)Furthermore,optimizing injection-extraction cycle efficiency can be achieved by augmenting reservoir dimensions while maintaining a consistent thickness.To ensure a smooth transition to implementation,further comprehensive investigations are advised,including experimental and numerical studies to address injectivity concerns and explore storage site development.This evaluation framework is a valuable tool for assessing the potential of depleted gas reservoirs for large-scale hydrogen storage,advancing global eco-friendly energy systems.展开更多
A procedure is developed to incorporate seismic environment and site condition into the framework of seismic vulnerability estimation of building to consider the effects of the severity and/or frequency content of gro...A procedure is developed to incorporate seismic environment and site condition into the framework of seismic vulnerability estimation of building to consider the effects of the severity and/or frequency content of ground motion due to seismic environment and site condition. Localized damage distribution can be strongly influenced by seismic environment and surficial soil conditions and any attempt to quantify seismic vulnerability of building should consider the impact of these effects. The seismic environment, site and structure are coupled to estimate damage probability distribution among different damage states for the building. Response spectra at rock site are estimated by probabilistic seismic hazard assessment approach. Based upon engineering representations of soil and amplifying spectral coordinates, frequency content and severity of ground motion are considered. Furthermore the impacts of severity and/or frequency of ground motion effects are considered to estimate the seismic response of reinforced concrete building and damage probability distribution for the building. In addition, a new method for presenting the distribution of damage is developed to express damage probability distribution for the building for different seismic hazard levels.展开更多
A multi-objective lectotype optimization model based on site conditions and seismic fortification intensity is presented for mid-highrise residential buildings taking into account multiple items such as the original i...A multi-objective lectotype optimization model based on site conditions and seismic fortification intensity is presented for mid-highrise residential buildings taking into account multiple items such as the original investment, disaster losses and maintenance cost, the integral stiffness, the total ductility, the construction period, and so on. A Three-Scale Fuzzy Analytical Hierarchy process is proposed by introducing the Three-Scale Analytical Hierarchy process and the trapezoid fuzzy number. The result of a calculation example shows that the T-FAHP is practical.展开更多
Asset management is a strategic decision-making aspect of social infra-structure that ensures safety by predicting long-term conditions and maximizing effectiveness under budgetary constraints. Predicting the deterior...Asset management is a strategic decision-making aspect of social infra-structure that ensures safety by predicting long-term conditions and maximizing effectiveness under budgetary constraints. Predicting the deterioration of impervious walls is essential in the asset management of coastal landfill sites, particularly in the design of their maintenance and repair strategy. In this paper, a quantitative evaluation of the leakage of toxic substances in coastal landfill sites where deterioration of side impervious walls has decreased the water interception performance is reported. In addition, risk evaluation based on the asset management of the leakage is applied to determine an appropriate repair method. The strategy of repairing the walls when the concentration of the toxic substances leaking into the sea area exceeds the closure and abandonment of coastal landfill sites is demonstrated to be superior. Moreover, the strategy of repairing only the seaside side impervious wall is shown to be cost-effective.展开更多
Migrant relocation is an important measure for the scenic spot to effectively protect the ecological environment.The problem of migrant relocation of Wulingyuan World Heritage Site is the most serious and difficult pr...Migrant relocation is an important measure for the scenic spot to effectively protect the ecological environment.The problem of migrant relocation of Wulingyuan World Heritage Site is the most serious and difficult problem in the development of Wulingyuan,and it is a very representative case of migrant relocation in tourist attractions of China.Based on the community participation theory,this paper made a detailed analysis of the panel data on the relocation of residents in Wulingyuan World Heritage Site.Combining the first-hand information obtained from the field interviews,starting from the reasons for the relocation,the resettlement plan,and the effects of the relocation,it also analyzed the problems existing in the relocation of residents in Wulingyuan World Heritage Site.Finally,it came up with recommendations in line with the interests of residents from the perspective of community participation.展开更多
Uganda principally depends on hydropower for electricity generation. However, expansion of hydropower resources islimited, and with growing population and demand for electricity, the government of Uganda is considerin...Uganda principally depends on hydropower for electricity generation. However, expansion of hydropower resources islimited, and with growing population and demand for electricity, the government of Uganda is considering integration of nuclearpower into its energy mix. With the current and projected grid capacity, SMR (small modular reactor) technology is attractive sincecapacity can be added incrementally. This paper therefore presents results for SMR site selection in Uganda. Starting with twentyregional areas established by the Ugandan government, a site selection process is outlined which uses four levels of screening andranking. First, exclusion criteria including seismicity, volcanic activity, water resources, and transportation distances were applied.This reduced the potential regional areas down to eight. Next, MAUT (multi-attribute utility theory) weighting was assigned to theseeight areas for: (1) distance to large population centers, (2) ease of transportation, and (3) distance to seismically or volcanically activeareas. From this ranking, four regional areas stood out and were then selected. These regions were then compared using variousattributes including access to water and integration with the developing national grid. In the final step, the lead candidate region wassubdivided into subzones to further refine the selection process.展开更多
Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of ...Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.展开更多
The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in s...The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in synergistically regulating their electronic states and structural porosity for the great device performance.Here,we conquer these issues by exploiting N and S co-doped graphene with COP rich in metal-ligand nitrogen to synergistically construct an effective catalyst for oxygen reduction reaction(ORR).Among them,the N and S co-doped sites with high electronegativity properties alter the number of electron occupations in the d orbital of the iron centre and form electron-transfer bridges,thereby boosting the selectivity of the ORR-catalysed four-electron pathway.Meanwhile,the introduction of COP materials aids the formation of pore interstices in the graphene lamellae,which both adequately expose the active sites and facilitate the transport of reactive substances.Benefiting from the synergistic effect,as-prepared catalyst exhibits excellent half-wave potentials(E_(1/2)=912 mV)and stability(merely 8.8%drop after a long-term durability test of 50000 s).Further,ZAFBs assembled with the N/SG@CO_(2)P catalyst demonstrate exceptional power density(163.8 mW cm^(-2))and continuous charge and discharge for approximately 140 h at 10 mA cm^(-2),outperforming the noble-metal benchmarks.展开更多
Similarities play an important role in the reconstruction of human physical,cultural and technological evolution.The two sites presented in this paper,the Middle Palaeolithic site Lingjing in China Layer 10 and 11 and...Similarities play an important role in the reconstruction of human physical,cultural and technological evolution.The two sites presented in this paper,the Middle Palaeolithic site Lingjing in China Layer 10 and 11 and the Lower Palaeolithic site Schöningen 13Ⅱ-4,the socalled Schöningen Spear Horizon in Germany,show striking similarities.The archaeological record of both sites includes lithic artifacts as well as a very large assemblage of fossil bones.The preservation of the material at both sites is excellent and the faunas encountered at both sites show many similarities.The faunal lists of both sites include a diverse carnivore guild,an elephant species,two different rhinoceros species,two different equids,different cervids and large bovids.Both sites also yielded bone retouchers as well as a unique record of bone hammers that show identical,unusual flaking and percussion damage.These similarities are remarkable if one takes into account the difference in age(ca 200 kaBP)and the geographical distance between the two sites of ca 8000 km.Therefore,we do not assume a close cultural link between the hominin populations active at both sites.The authors assume that the observed similarities show more or less identical,opportunistic hominin behaviour at both sites located in a comparable environment with more or less similar taphonomic conditions.展开更多
Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical fun...Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.展开更多
In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions...In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions would lead to mineralogy transformation and buffer performance decay of bentonite under the near field environment conditions in a repository.A small-scale experimental setup was established to simulate the concrete-bentonite-site water interaction system from a potential nuclear waste repository in China.Three types of mortars were prepared to correspond to the concrete at different degradation states.The results permit the determination of the following:(1)The macroproperties of Gaomiaozi(GMZ)bentonite(e.g.swelling pressure,permeability,the final dry density,and water content of reacted samples);(2)The composition evolution of fluids from the synthetic site water-concrete-bentonite interaction systems;(3)The sample characterization including Fourier transform infrared spectroscopy(FTIR)and X-ray powder diffraction(XRD).Under the infiltration of the synthesis Beishan site water(BSW),the swelling pressure of bentonite decreases slowly with time after reaching its second swelling peak.The flux decreases with time during the infiltrations,and it tends to be stable after more than 120 d.Due to the cation exchange reactions in the BSW-concrete-bentonite systems,the divalent cations(Ca and Mg)were consumed,and the monovalent cations(Na and K)were released.The dissolution of minerals in the bentonite such as albite causes Si increasing in the pore water.It was concluded that the hydro-mechanical property degradation of bentonite takes place when it comes into contact with concrete mortar,even under low-pH groundwater conditions.The soil dispersion,the uneven water content,and the uneven dry density in bentonite samples may partly contribute to the swelling decay of bentonite.Therefore,the direct contact with concrete has an obvious effect on the performance of bentonite.展开更多
文摘Based on the concept of site characteristic and site spirit,by taking the Residential Community of the Fifth Agricultural Construction Division in Bole City of Xinjiang Uygur Autonomous Region for example,the paper has analyzed its background and general situation,and the site characteristic,and emphasized that its planning and design should manifest the comfortable and cozy environment of the residential community,army culture unique in the Fifth Agricultural Division of Xinjiang Crops,and its enterprising spirit.It has pointed out the design should highlight people orientation;stress the quality of living environment;emphasize the individuality of the residential community;combine new technologies;respect the sunshine,terrain and waterscape of the site;well deal with the spatial location of the site;and pay attention to the inheritance of historical culture in the site,so as to create a high-grade residential community integrating army crops feature and water style,with complete supporting facilities,and in possession of unique sharing space,broad landscape avenue and wide building span.
基金National Natural Science Foundation of China Under Grant No.50808168Ministry of Science and Technology of Weihai Under Grant No.2008087Beijing Natural Science Foundation Under Grant No.8092029
文摘Near-fault ground motions, potentially with large amplitude and typical velocity pulses, may significantly impact the performance of a wide range of structures. The current study is aimed at evaluating the safety implications of the near-fault effect on nuclear power plant facilities designed according to the Chinese code. To this end, a set of near- fault ground motions at rock sites with typical forward-directivity effect is examined with special emphasis on several key parameters and response spectra. Spectral comparison of the selected records with the Chinese and other code design spectra was conducted. The bi-normalized response spectra in terms of different comer periods are utilized to derive nuclear design spectra. It is concluded that nuclear design spectra on rock sites derived from typical rupture directivity records are significantly influenced both by the earthquake magnitude and the rupture distance. The nuclear design spectra specified in the code needs to be adjusted to reflect the near-fault directivity effect of large earthquakes.
基金Natural Sciences and Engineering Research Council of Canada (NSERC)University Network of Excellence in Nuclear Engineering (UNENE)
文摘Newmark design spectra have been implemented in many building codes, especially in building codes for critical structures. Previous studies show that Newmark design spectra exhibit lower amplitudes at high frequencies and larger amplitudes at low frequencies in comparison with spectra developed by statistical methods. To resolve this problem, this study considers three suites of ground motions recorded at three types of sites. Using these ground motions, influences of the shear-wave velocity, earthquake magnitudes, source-to-site distances on the ratios of ground motion parameters are studied, and spectrum amplification factors are statistically calculated. Spectral bounds for combinations of three site categories and two cases of earthquake magnitudes are estimated. Site design spectrum coefficients for the three site categories considering earthquake magnitudes are established. The problems of Newmark design spectra could be resolved by using the site design spectrum coefficients to modify the spectral values of Newmark design spectra in the acceleration sensitive, velocity sensitive, and displacement sensitive regions.
基金Supported by the Social and Scientific Funds Projects of Hubei Province in 2009 (203004)
文摘The paper tends to make an empirical analysis on the experimental site of new countryside construction of Xianhong in Hubei, pointing out that the inner and outer dependence on routines of experimental construction. The paper also puts forward the beneficial policies, focusing on the agricultural production and fostering professional farmers, to reduce much dependence on routines.
基金sponsored by the Basic Scientific Research Business Special,Institute of Geophysics,China Earthquake Administration (BQJB08B24)
文摘In accordance with the principle of similarity in geology and topography, the Vs^30 (the average shear-velocity down to a 30m depth below the surface) approximation of sites is acquired by correlation between Vs^30 and slopes after calculating the maximum slope of topography using the 30-sec Chinese Mainland DEM (Digital Elevation Model) data set. Site-amplification factors are then quantified with Vs^30 and applied to the ShakeMap system developed by this study to revise ground-motion amplitudes on bedrock estimated from empirical relationships. Finally, the distribution of ground motion parameters on the surface is obtained. This article also introduces the calculation process, calculation models of the ShakeMap systems and related software systems. In conclusion, certain examples indicate that the ShakeMap system is feasible in the Chinese Mainland.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
文摘Results are reported on a research for the radioactive level in the investigation region and the control region around the Xinjiang Nuclear Testing Site from 1982 to 1987. There are no significant differences on the land γ radiation level, nor in the radioactive level in the soil, food and water between the two regions. The distribution and transfer of 90Sr, 137Cs and Pu in various kinds of soil are also discussed. It is estimated that the effective dose equivalent of radiation, undergone by the residents around the Testing Site is only 2.9% of that of natural radiation taken yearly by people in normal areas.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
文摘With rising demand for clean energy,global focus turns to finding ideal sites for large-scale underground hydrogen storage(UHS)in depleted petroleum reservoirs.A thorough preliminary reservoir evaluation before hydrogen(H_(2))injection is crucial for UHS success and safety.Recent criteria for UHS often emphasize economics and chemistry,neglecting key reservoir attributes.This study introduces a comprehensive framework for the reservoir-scale preliminary assessment,specifically tailored for long-term H_(2) storage within depleted gas reservoirs.The evaluation criteria encompass critical components,including reservoir geometry,petrophysical properties,tectonics,and formation fluids.To illustrate the practical application of this approach,we assess the Barnett shale play reservoir parameters.The assessment unfolds through three key stages:(1)A systematic evaluation of the reservoir's properties against our comprehensive screening criteria determines its suitability for H_(2) storage.(2)Using both homogeneous and multilayered gas reservoir models,we explore the feasibility and efficiency of H_(2) storage.This phase involves an in-depth examination of reservoir behavior during the injection stage.(3)To enhance understanding of UHS performance,sensitivity analyses investigate the impact of varying reservoir dimensions and injection/production pressures.The findings reveal the following:(a)Despite potential challenges associated with reservoir compaction and aquifer support,the reservoir exhibits substantial promise as an H_(2) storage site.(b)Notably,a pronounced increase in reservoir pressure manifests during the injection stage,particularly in homogeneous reservoirs.(c)Furthermore,optimizing injection-extraction cycle efficiency can be achieved by augmenting reservoir dimensions while maintaining a consistent thickness.To ensure a smooth transition to implementation,further comprehensive investigations are advised,including experimental and numerical studies to address injectivity concerns and explore storage site development.This evaluation framework is a valuable tool for assessing the potential of depleted gas reservoirs for large-scale hydrogen storage,advancing global eco-friendly energy systems.
基金National Natural Science Foundation of China (50578150), Joint Seismological Science Foundation of China (104064), Natural Science Foundation of Beijing (8062026) and Public Welfare Development Foundation.
文摘A procedure is developed to incorporate seismic environment and site condition into the framework of seismic vulnerability estimation of building to consider the effects of the severity and/or frequency content of ground motion due to seismic environment and site condition. Localized damage distribution can be strongly influenced by seismic environment and surficial soil conditions and any attempt to quantify seismic vulnerability of building should consider the impact of these effects. The seismic environment, site and structure are coupled to estimate damage probability distribution among different damage states for the building. Response spectra at rock site are estimated by probabilistic seismic hazard assessment approach. Based upon engineering representations of soil and amplifying spectral coordinates, frequency content and severity of ground motion are considered. Furthermore the impacts of severity and/or frequency of ground motion effects are considered to estimate the seismic response of reinforced concrete building and damage probability distribution for the building. In addition, a new method for presenting the distribution of damage is developed to express damage probability distribution for the building for different seismic hazard levels.
文摘A multi-objective lectotype optimization model based on site conditions and seismic fortification intensity is presented for mid-highrise residential buildings taking into account multiple items such as the original investment, disaster losses and maintenance cost, the integral stiffness, the total ductility, the construction period, and so on. A Three-Scale Fuzzy Analytical Hierarchy process is proposed by introducing the Three-Scale Analytical Hierarchy process and the trapezoid fuzzy number. The result of a calculation example shows that the T-FAHP is practical.
文摘Asset management is a strategic decision-making aspect of social infra-structure that ensures safety by predicting long-term conditions and maximizing effectiveness under budgetary constraints. Predicting the deterioration of impervious walls is essential in the asset management of coastal landfill sites, particularly in the design of their maintenance and repair strategy. In this paper, a quantitative evaluation of the leakage of toxic substances in coastal landfill sites where deterioration of side impervious walls has decreased the water interception performance is reported. In addition, risk evaluation based on the asset management of the leakage is applied to determine an appropriate repair method. The strategy of repairing the walls when the concentration of the toxic substances leaking into the sea area exceeds the closure and abandonment of coastal landfill sites is demonstrated to be superior. Moreover, the strategy of repairing only the seaside side impervious wall is shown to be cost-effective.
文摘Migrant relocation is an important measure for the scenic spot to effectively protect the ecological environment.The problem of migrant relocation of Wulingyuan World Heritage Site is the most serious and difficult problem in the development of Wulingyuan,and it is a very representative case of migrant relocation in tourist attractions of China.Based on the community participation theory,this paper made a detailed analysis of the panel data on the relocation of residents in Wulingyuan World Heritage Site.Combining the first-hand information obtained from the field interviews,starting from the reasons for the relocation,the resettlement plan,and the effects of the relocation,it also analyzed the problems existing in the relocation of residents in Wulingyuan World Heritage Site.Finally,it came up with recommendations in line with the interests of residents from the perspective of community participation.
文摘Uganda principally depends on hydropower for electricity generation. However, expansion of hydropower resources islimited, and with growing population and demand for electricity, the government of Uganda is considering integration of nuclearpower into its energy mix. With the current and projected grid capacity, SMR (small modular reactor) technology is attractive sincecapacity can be added incrementally. This paper therefore presents results for SMR site selection in Uganda. Starting with twentyregional areas established by the Ugandan government, a site selection process is outlined which uses four levels of screening andranking. First, exclusion criteria including seismicity, volcanic activity, water resources, and transportation distances were applied.This reduced the potential regional areas down to eight. Next, MAUT (multi-attribute utility theory) weighting was assigned to theseeight areas for: (1) distance to large population centers, (2) ease of transportation, and (3) distance to seismically or volcanically activeareas. From this ranking, four regional areas stood out and were then selected. These regions were then compared using variousattributes including access to water and integration with the developing national grid. In the final step, the lead candidate region wassubdivided into subzones to further refine the selection process.
基金supported by the Innovation Foundation of Graduate Student of Harbin Normal University (No.HSDBSCX2023-3),China。
文摘Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.
基金supported by the National Key Research and Development Program of China(2022YFB3807500)the Natural Science Foundation of China(22220102003)+3 种基金the Beijing Natural Science Foundation(JL23003)"Double-First-Class"construction projects(XK180301 and XK1804-02)China Postdoctoral Science Foundation 2023TQ0020Dostdoctoral Fellowship Program of CPSF(GZC20230199)。
文摘The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in synergistically regulating their electronic states and structural porosity for the great device performance.Here,we conquer these issues by exploiting N and S co-doped graphene with COP rich in metal-ligand nitrogen to synergistically construct an effective catalyst for oxygen reduction reaction(ORR).Among them,the N and S co-doped sites with high electronegativity properties alter the number of electron occupations in the d orbital of the iron centre and form electron-transfer bridges,thereby boosting the selectivity of the ORR-catalysed four-electron pathway.Meanwhile,the introduction of COP materials aids the formation of pore interstices in the graphene lamellae,which both adequately expose the active sites and facilitate the transport of reactive substances.Benefiting from the synergistic effect,as-prepared catalyst exhibits excellent half-wave potentials(E_(1/2)=912 mV)and stability(merely 8.8%drop after a long-term durability test of 50000 s).Further,ZAFBs assembled with the N/SG@CO_(2)P catalyst demonstrate exceptional power density(163.8 mW cm^(-2))and continuous charge and discharge for approximately 140 h at 10 mA cm^(-2),outperforming the noble-metal benchmarks.
文摘Similarities play an important role in the reconstruction of human physical,cultural and technological evolution.The two sites presented in this paper,the Middle Palaeolithic site Lingjing in China Layer 10 and 11 and the Lower Palaeolithic site Schöningen 13Ⅱ-4,the socalled Schöningen Spear Horizon in Germany,show striking similarities.The archaeological record of both sites includes lithic artifacts as well as a very large assemblage of fossil bones.The preservation of the material at both sites is excellent and the faunas encountered at both sites show many similarities.The faunal lists of both sites include a diverse carnivore guild,an elephant species,two different rhinoceros species,two different equids,different cervids and large bovids.Both sites also yielded bone retouchers as well as a unique record of bone hammers that show identical,unusual flaking and percussion damage.These similarities are remarkable if one takes into account the difference in age(ca 200 kaBP)and the geographical distance between the two sites of ca 8000 km.Therefore,we do not assume a close cultural link between the hominin populations active at both sites.The authors assume that the observed similarities show more or less identical,opportunistic hominin behaviour at both sites located in a comparable environment with more or less similar taphonomic conditions.
基金the following funding agencies for supporting this work: the National Natural Science Foundation of China (22025502, U23A20552, 22379026, 22222901, 22175022)the Natural Science Foundation of Shanghai (23ZR1407000)the Science and Technology Commission of Shanghai Municipality (21DZ1206800)
文摘Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.
基金supported by the National Natural Science Foundation of China(Grant No.42125701)the Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD26)+2 种基金Fund of the Shanghai Science and Technology Commission(Grant No.22DZ2201200)Top Discipline Plan of Shanghai Universities-Class I and the Fundamental Research Funds for the Central UniversitiesFinancial support from the International Post-Doc Fund of The Hong Kong Polytechnic University is greatly appreciated.
文摘In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions would lead to mineralogy transformation and buffer performance decay of bentonite under the near field environment conditions in a repository.A small-scale experimental setup was established to simulate the concrete-bentonite-site water interaction system from a potential nuclear waste repository in China.Three types of mortars were prepared to correspond to the concrete at different degradation states.The results permit the determination of the following:(1)The macroproperties of Gaomiaozi(GMZ)bentonite(e.g.swelling pressure,permeability,the final dry density,and water content of reacted samples);(2)The composition evolution of fluids from the synthetic site water-concrete-bentonite interaction systems;(3)The sample characterization including Fourier transform infrared spectroscopy(FTIR)and X-ray powder diffraction(XRD).Under the infiltration of the synthesis Beishan site water(BSW),the swelling pressure of bentonite decreases slowly with time after reaching its second swelling peak.The flux decreases with time during the infiltrations,and it tends to be stable after more than 120 d.Due to the cation exchange reactions in the BSW-concrete-bentonite systems,the divalent cations(Ca and Mg)were consumed,and the monovalent cations(Na and K)were released.The dissolution of minerals in the bentonite such as albite causes Si increasing in the pore water.It was concluded that the hydro-mechanical property degradation of bentonite takes place when it comes into contact with concrete mortar,even under low-pH groundwater conditions.The soil dispersion,the uneven water content,and the uneven dry density in bentonite samples may partly contribute to the swelling decay of bentonite.Therefore,the direct contact with concrete has an obvious effect on the performance of bentonite.