期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits 被引量:4
1
作者 Pengfei Cheng Changli Zhao +4 位作者 Pei Han Jiahua Ni Shaoxiang Zhang Xiaonong Zhang Yimin Chai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期883-888,共6页
Magnesium (Mg) has been widely accepted as osteoconductive biomaterial, but osseointegration of Mg device at different implantation sites is still unclear. In the present study, high-purity magnesium (HP Mg) pins ... Magnesium (Mg) has been widely accepted as osteoconductive biomaterial, but osseointegration of Mg device at different implantation sites is still unclear. In the present study, high-purity magnesium (HP Mg) pins were implanted into femoral shaft and condyle of New Zealand rabbits concurrently. 2, 8, 12 and 16 weeks after surgery, rabbit femurs were harvested for micro-computed tomography (micro-CT) scanning and subsequent histological examinations. HP Mg pins were retrieved for scanning electron microscope and energy dispersive spectrum (SEM/EDS) analyses. HP Mg pins at both implantation sites performed stable corrosion with mineral deposition and bone incorporation on surface. However, difference in distribution of contact osteogenesis centers and biological properties of peri-implant bone tissues was detected between femoral shaft and femoral condyle. In femoral condyle, contact osteogenesis centers originated from both periosteum and cancellous bones and the whole HP Mg pin was encapsuled in trabecular bone at 16 weeks. Meanwhile, bone volume to total bone volume (BV/TV) and bone mineral density (BMD) of peri-implant bone tissues were above those of normal bone tissues. In femoral shaft, contact osteogenesis centers were only from periosteum and direct bone contact was confined in cortical bone, while BV/TV and BMD kept lower than normal. Furthermore, new formation of peri-implant bone tissues was more active in femoral condyle than in femoral shaft at 16 weeks. Therefore, although HP Mg performed good biocompatibility and corrosion behavior in vivo, its bioadaption of osseointegration at different implantations sites should be taken into consideration. Bone metaphysic was suitable for Mg devices where peri-implant bone tissues regenerated rapidly and the biological properties were close to normal bone tissues. 展开更多
关键词 Osseointegration High-purity magnesium site-dependent Femoral shaft and condyle Bioadaption
原文传递
Damping-like effects in Heisenberg spin chain caused by the site-dependent bilinear interaction
2
作者 Yu-Juan Zhang Dun Zhao Zai-Dong Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第1期45-53,共9页
We investigate a continuous Heisenberg spin chain equation which models the local magnetization in ferromagnet with time-and site-dependent inhomogeneous bilinear interaction and timedependent spin-transfer torque.By ... We investigate a continuous Heisenberg spin chain equation which models the local magnetization in ferromagnet with time-and site-dependent inhomogeneous bilinear interaction and timedependent spin-transfer torque.By establishing the gauge equivalence between the spin chain equation and an integrable generalized nonlinear Schrödinger equation,we present explicitly a novel nonautonomous magnetic soliton solution for the spin chain equation.The results display how the dynamics of the magnetic soliton can be controlled by the bilinear interaction and spin-polarized current.Especially,we find that the site-dependent bilinear interaction may break some conserved quantity,and give rise to damping-like effect in the spin evolution. 展开更多
关键词 Heisenberg spin chain site-dependent bilinear interaction spin-transfer torque magnetic soliton damping effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部