Genome editing is a valuable tool to target specific DNA sequences for mutagenesis in the genomes of microbes, plants, and animals. Although different genome editing technologies are available, the clustered regularly...Genome editing is a valuable tool to target specific DNA sequences for mutagenesis in the genomes of microbes, plants, and animals. Although different genome editing technologies are available, the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/ Cas9) system, which utilizes engineered endonucleases to generate a double-stranded DNA break (DSB) in the target DNA region and subsequently stimulates site-specific mutagenesis through DNA repair machineries, is emerging as a powerful genome editing tool for elucidating mecha- nisms of protection from plant viruses, plant disease resistance, and gene functions in basic and applied research. In this review, we provide an overview of recent advances in the CRISPR system associated genome editing in plants by focusing on application of this technology in model plants, crop plants, fruit plants, woody plants and grasses and discuss how genome editing associated with the CRISPR system can provide insights into genome modifications and functional genomics in plants.展开更多
Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulati...Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected Fo fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.展开更多
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system, which is a newly developed technology for targeted genome modification, has been successfully used in a number of species. In this stud...CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system, which is a newly developed technology for targeted genome modification, has been successfully used in a number of species. In this study, we applied this technology to carry out targeted genome modification in maize. A marker gene Zmzb7 was chosen for targeting. The sgRNA-Cas9 construct was transformed into maize protoplasts, and indel (insertion and deletion) mutations could be detected. A mutant seedling with an expected albino phenotype was obtained from screening 120 seedlings generated from 10 callus events. Mutation efficiency in maize heterochromatic regions was also investigated. Twelve sites with different expression levels in maize centromeres or pericentromere regions were selected. The sgRNA- Cas9 constructs were transformed into protoplasts followed by sequencmg the transformed protoplast genomic DNA. The results show that the genes in heterochromatic regions could be targeted by the CRISPR/Cas9 system efficiently, no matter whether they are expressed or not. Meanwhile, off-target mutations were not found in the similar sites having no PAM (protospacer adjacent motif) or having more than two mismatches. Together. our results show that the CRISPR/Cas9 system is a robust and efficient tool for genome modification in both euchromatic and heterochromatic regions in maize.展开更多
文摘Genome editing is a valuable tool to target specific DNA sequences for mutagenesis in the genomes of microbes, plants, and animals. Although different genome editing technologies are available, the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/ Cas9) system, which utilizes engineered endonucleases to generate a double-stranded DNA break (DSB) in the target DNA region and subsequently stimulates site-specific mutagenesis through DNA repair machineries, is emerging as a powerful genome editing tool for elucidating mecha- nisms of protection from plant viruses, plant disease resistance, and gene functions in basic and applied research. In this review, we provide an overview of recent advances in the CRISPR system associated genome editing in plants by focusing on application of this technology in model plants, crop plants, fruit plants, woody plants and grasses and discuss how genome editing associated with the CRISPR system can provide insights into genome modifications and functional genomics in plants.
基金supported by the grants from the 973 Program(Nos.2009CB918702 and 2012CB945101)the NSFC(Nos.31071087 and 31100889)+1 种基金W.-M.D.is supported by NIH grant R01GM072562National Science Foundation of USA(IOS-1052333)
文摘Technology development has always been one of the forces driving breakthroughs in biomedical research. Since the time of Thomas Morgan, Drosophilists have, step by step, developed powerful genetic tools for manipulating and functionally dissecting the Drosophila genome, but room for improving these technologies and developing new techniques is still large, especially today as biologists start to study systematically the functional genomics of different model organisms, including humans, in a high-throughput manner. Here, we report, for the first time in Drosophila, a rapid, easy, and highly specific method for modifying the Drosophila genome at a very high efficiency by means of an improved transcription activator-like effector nuclease (TALEN) strategy. We took advantage of the very recently developed "unit assembly" strategy to assemble two pairs of specific TALENs designed to modify the yellow gene (on the sex chromosome) and a novel autosomal gene. The mRNAs of TALENs were subsequently injected into Drosophila embryos. From 31.2% of the injected Fo fertile flies, we detected inheritable modification involving the yellow gene. The entire process from construction of specific TALENs to detection of inheritable modifications can be accomplished within one month. The potential applications of this TALEN-mediated genome modification method in Drosophila are discussed.
基金supported by the National Natural Science Foundation of China(No.31320103912)
文摘CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system, which is a newly developed technology for targeted genome modification, has been successfully used in a number of species. In this study, we applied this technology to carry out targeted genome modification in maize. A marker gene Zmzb7 was chosen for targeting. The sgRNA-Cas9 construct was transformed into maize protoplasts, and indel (insertion and deletion) mutations could be detected. A mutant seedling with an expected albino phenotype was obtained from screening 120 seedlings generated from 10 callus events. Mutation efficiency in maize heterochromatic regions was also investigated. Twelve sites with different expression levels in maize centromeres or pericentromere regions were selected. The sgRNA- Cas9 constructs were transformed into protoplasts followed by sequencmg the transformed protoplast genomic DNA. The results show that the genes in heterochromatic regions could be targeted by the CRISPR/Cas9 system efficiently, no matter whether they are expressed or not. Meanwhile, off-target mutations were not found in the similar sites having no PAM (protospacer adjacent motif) or having more than two mismatches. Together. our results show that the CRISPR/Cas9 system is a robust and efficient tool for genome modification in both euchromatic and heterochromatic regions in maize.