The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To ...The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To solve these problems,a combined prediction model based on the temporal convolution attention network(TCAN)and bi-directional gate recurrent unit(BiGRU)network is proposed,which is optimized by singular spectrum analysis(SSA)and improved quantum particle swarmoptimization algorithm(IQPSO).This model first decomposes and reconstructs network security situation data into a series of subsequences by SSA to remove the noise from the data.Furthermore,a prediction model of TCAN-BiGRU is established respectively for each subsequence.TCAN uses the TCN to extract features from the network security situation data and the improved channel attention mechanism(CAM)to extract important feature information from TCN.BiGRU learns the before-after status of situation data to extract more feature information from sequences for prediction.Besides,IQPSO is proposed to optimize the hyperparameters of BiGRU.Finally,the prediction results of the subsequence are superimposed to obtain the final predicted value.On the one hand,IQPSO compares with other optimization algorithms in the experiment,whose performance can find the optimum value of the benchmark function many times,showing that IQPSO performs better.On the other hand,the established prediction model compares with the traditional prediction methods through the simulation experiment,whose coefficient of determination is up to 0.999 on both sets,indicating that the combined prediction model established has higher prediction accuracy.展开更多
Network security situation is a hot research topic in the field of network security. Whole situation awareness includes the current situation evaluation and the future situation prediction. However, the now-existing r...Network security situation is a hot research topic in the field of network security. Whole situation awareness includes the current situation evaluation and the future situation prediction. However, the now-existing research focuses on the current situation evaluation, and seldom discusses the future prediction. Based on the historical research, an improved grey Verhulst model is put forward to predict the future situation. Aiming at the shortages in the prediction based on traditional Verhulst model, the adaptive grey parameters and equal- dimensions grey filling methods are proposed to improve the precision. The simulation results prove that the scheme is efficient and applicable.展开更多
A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and m...A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and matrix modularity analysis, a novel prediction method is proposed through investigating the correlating influence of three key measurements: relationship strength, pillars, and change frequency of a forum topic. The method demonstrates that there exist some macroscopic and potential laws for forum situation prediction. Extensive experiments over large many datasets show the efficiency and effectiveness of the algorithms.展开更多
Network Security Situation Awareness System YHSAS acquires,understands and displays the security factors which cause changes of network situation,and predicts the future development trend of these security factors.YHS...Network Security Situation Awareness System YHSAS acquires,understands and displays the security factors which cause changes of network situation,and predicts the future development trend of these security factors.YHSAS is developed for national backbone network,large network operators,large enterprises and other large-scale network.This paper describes its architecture and key technologies:Network Security Oriented Total Factor Information Collection and High-Dimensional Vector Space Analysis,Knowledge Representation and Management of Super Large-Scale Network Security,Multi-Level,Multi-Granularity and Multi-Dimensional Network Security Index Construction Method,Multi-Mode and Multi-Granularity Network Security Situation Prediction Technology,and so on.The performance tests show that YHSAS has high real-time performance and accuracy in security situation analysis and trend prediction.The system meets the demands of analysis and prediction for large-scale network security situation.展开更多
The key to failure prevention for aero-engine lies in performance prediction and the exhaust gas temperature margin(EGTM)is used as the most important degradation parameter to obtain the operating performance of the a...The key to failure prevention for aero-engine lies in performance prediction and the exhaust gas temperature margin(EGTM)is used as the most important degradation parameter to obtain the operating performance of the aero-engine.Because of the complex environment interference,EGTM always has strong randomness,and the state space based degradation model can identify the noisy observation from the true degradation state,which is more close to the actual situations.Therefore,a state space model based on EGTM is established to describe the degradation path and predict the remaining useful life(RUL).As one of the most effective methods for both linear state estimation and parameter estimation,Kalman filter(KF)is applied.Firstly,with EGTM degradation data,state space model approach is used to set up a state space model for aero-engine.Secondly,RUL of aero-engine is analyzed,and expected RUL and distribution of RUL are determined.Finally,the sate space model and KF algorithm are applied to an example of CFM-56aero-engine.The expected RUL is predicted,and corresponding probability density distribution(PDF)and cumulative distribution function(CDF)are given.The result indicates that the accuracy of RUL prediction reaches 7.76%ahead 580 flight cycles(FC),which is more accurate than linear regression,and therefore shows the validity and rationality of the proposed method.展开更多
The accurate and real-time prediction of network security situation is the premise and basis of preventing intrusions and attacks in a large-scale network. In order to predict the security situation more accurately, a...The accurate and real-time prediction of network security situation is the premise and basis of preventing intrusions and attacks in a large-scale network. In order to predict the security situation more accurately, a quantitative prediction method of network security situation based on Wavelet Neural Network with Genetic Algorithm (GAWNN) is proposed. After analyzing the past and the current network security situation in detail, we build a network security situation prediction model based on wavelet neural network that is optimized by the improved genetic algorithm and then adopt GAWNN to predict the non-linear time series of network security situation. Simulation experiments prove that the proposed method has advantages over Wavelet Neural Network (WNN) method and Back Propagation Neural Network (BPNN) method with the same architecture in convergence speed, functional approximation and prediction accuracy. What is more, system security tendency and laws by which security analyzers and administrators can adjust security policies in near real-time are revealed from the prediction results as early as possible.展开更多
基金This work is supported by the National Science Foundation of China(61806219,61703426,and 61876189)by National Science Foundation of Shaanxi Provence(2021JM-226)by the Young Talent fund of the University,and the Association for Science and Technology in Shaanxi,China(20190108,20220106)by and the Innovation Capability Support Plan of Shaanxi,China(2020KJXX-065).
文摘The accuracy of historical situation values is required for traditional network security situation prediction(NSSP).There are discrepancies in the correlation and weighting of the various network security elements.To solve these problems,a combined prediction model based on the temporal convolution attention network(TCAN)and bi-directional gate recurrent unit(BiGRU)network is proposed,which is optimized by singular spectrum analysis(SSA)and improved quantum particle swarmoptimization algorithm(IQPSO).This model first decomposes and reconstructs network security situation data into a series of subsequences by SSA to remove the noise from the data.Furthermore,a prediction model of TCAN-BiGRU is established respectively for each subsequence.TCAN uses the TCN to extract features from the network security situation data and the improved channel attention mechanism(CAM)to extract important feature information from TCN.BiGRU learns the before-after status of situation data to extract more feature information from sequences for prediction.Besides,IQPSO is proposed to optimize the hyperparameters of BiGRU.Finally,the prediction results of the subsequence are superimposed to obtain the final predicted value.On the one hand,IQPSO compares with other optimization algorithms in the experiment,whose performance can find the optimum value of the benchmark function many times,showing that IQPSO performs better.On the other hand,the established prediction model compares with the traditional prediction methods through the simulation experiment,whose coefficient of determination is up to 0.999 on both sets,indicating that the combined prediction model established has higher prediction accuracy.
基金the National Natural Science Foundation of China(No.60605019)
文摘Network security situation is a hot research topic in the field of network security. Whole situation awareness includes the current situation evaluation and the future situation prediction. However, the now-existing research focuses on the current situation evaluation, and seldom discusses the future prediction. Based on the historical research, an improved grey Verhulst model is put forward to predict the future situation. Aiming at the shortages in the prediction based on traditional Verhulst model, the adaptive grey parameters and equal- dimensions grey filling methods are proposed to improve the precision. The simulation results prove that the scheme is efficient and applicable.
基金Supported by the Natural Science Foundation of Hubei Province (ABAO48)
文摘A forum is a social network that consists of posters and the following comments made by netizens. Generally speaking, forum topics are evolving over time dynamically. In this paper, based on time series analysis and matrix modularity analysis, a novel prediction method is proposed through investigating the correlating influence of three key measurements: relationship strength, pillars, and change frequency of a forum topic. The method demonstrates that there exist some macroscopic and potential laws for forum situation prediction. Extensive experiments over large many datasets show the efficiency and effectiveness of the algorithms.
基金This work is funded by the National Natural Science Foundation of China under Grant U1636215the National key research and development plan under Grant Nos.2018YFB0803504,2016YFB0800303.
文摘Network Security Situation Awareness System YHSAS acquires,understands and displays the security factors which cause changes of network situation,and predicts the future development trend of these security factors.YHSAS is developed for national backbone network,large network operators,large enterprises and other large-scale network.This paper describes its architecture and key technologies:Network Security Oriented Total Factor Information Collection and High-Dimensional Vector Space Analysis,Knowledge Representation and Management of Super Large-Scale Network Security,Multi-Level,Multi-Granularity and Multi-Dimensional Network Security Index Construction Method,Multi-Mode and Multi-Granularity Network Security Situation Prediction Technology,and so on.The performance tests show that YHSAS has high real-time performance and accuracy in security situation analysis and trend prediction.The system meets the demands of analysis and prediction for large-scale network security situation.
文摘The key to failure prevention for aero-engine lies in performance prediction and the exhaust gas temperature margin(EGTM)is used as the most important degradation parameter to obtain the operating performance of the aero-engine.Because of the complex environment interference,EGTM always has strong randomness,and the state space based degradation model can identify the noisy observation from the true degradation state,which is more close to the actual situations.Therefore,a state space model based on EGTM is established to describe the degradation path and predict the remaining useful life(RUL).As one of the most effective methods for both linear state estimation and parameter estimation,Kalman filter(KF)is applied.Firstly,with EGTM degradation data,state space model approach is used to set up a state space model for aero-engine.Secondly,RUL of aero-engine is analyzed,and expected RUL and distribution of RUL are determined.Finally,the sate space model and KF algorithm are applied to an example of CFM-56aero-engine.The expected RUL is predicted,and corresponding probability density distribution(PDF)and cumulative distribution function(CDF)are given.The result indicates that the accuracy of RUL prediction reaches 7.76%ahead 580 flight cycles(FC),which is more accurate than linear regression,and therefore shows the validity and rationality of the proposed method.
基金Supported by the National High Technology Development 863 Program of China under Grant No.2007AA01Z401the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20050217007the National Defense Advanced Foundation under Grant No.513150602.
文摘The accurate and real-time prediction of network security situation is the premise and basis of preventing intrusions and attacks in a large-scale network. In order to predict the security situation more accurately, a quantitative prediction method of network security situation based on Wavelet Neural Network with Genetic Algorithm (GAWNN) is proposed. After analyzing the past and the current network security situation in detail, we build a network security situation prediction model based on wavelet neural network that is optimized by the improved genetic algorithm and then adopt GAWNN to predict the non-linear time series of network security situation. Simulation experiments prove that the proposed method has advantages over Wavelet Neural Network (WNN) method and Back Propagation Neural Network (BPNN) method with the same architecture in convergence speed, functional approximation and prediction accuracy. What is more, system security tendency and laws by which security analyzers and administrators can adjust security policies in near real-time are revealed from the prediction results as early as possible.