This paper proposes an approach to identify complex parameters describing concrete creep degree based on the simulated annealing (SA) principle.Through the existing engineering examples,the technique for variable pert...This paper proposes an approach to identify complex parameters describing concrete creep degree based on the simulated annealing (SA) principle.Through the existing engineering examples,the technique for variable perturbation is used to validate the astringency and credibility of the SA algorithm,and the sensitivity ofinvolved parameters to the objective function of the SA algorithm is also analyzed.Further,this study verifies the merits of the approach in simple programming structure,good stability,high calculation rate and accuracy.The SA algorithm should be recommended to apply for the multi-parameters identification of the similar engineering issues.展开更多
This paper presents a new nine⁃degree⁃of⁃freedom parallel mechanism,which can be applied as a flight simulator.The mechanism is composed by Stewart turntable and another three⁃axis turntable.The Stewart platform can r...This paper presents a new nine⁃degree⁃of⁃freedom parallel mechanism,which can be applied as a flight simulator.The mechanism is composed by Stewart turntable and another three⁃axis turntable.The Stewart platform can realize six⁃degree⁃of⁃freedom movement in space,but the working space is limited.After the three⁃axis turntable is installed,the rotation space can be increased to simulate more realistic flight conditions.This paper analyzes the new flight simulator from kinematics and dynamics aspects.In addition,the flight simulator is simulated and analyzed based on the MATLAB/Simulink simulation system.The results obtained from the numerical simulations is planned to be used for the practical manufacturing and applications of the new platform.展开更多
BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-p...BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-pull maneuver at various degrees on injury of hippocampal neurons in rats and analyze its phase effect. DESIGN: Randomized control study.SETTING : Physiological Department of Jilin Medical College.MATERIALS: A total of 40 healthy male Wistar rats, of clean grade, weighting 205-300 g, aged 3-4 months, were randomly divided into control group (n=4) and three push-pull experimental groups, including +2 Gz group (intensity: -2 Gz to +2 Gz, n=12), +6 Gz group (-6 Gz to +6 Gz, n=12) and +8 Gz group (-8 Gz to +8 Gz, n=12).METHODS: The experiment was completed in the Physiological Department of Jilin Military Medical College from March 2002 to May 2003. ① Rats in the experimental groups were put at the specially rolling arm of animal centrifugal machine. Then, they were pushed and pulled with ±2 Gz, ±6 Gz and ±8 Gz, respectively. The jolt was 1 Gz/s. However, rats in control group were not treated with any ways. ② Stroke index and neurological evaluation were performed on rats in the experimental groups at 0.5, 6 and 24 hours after push-pull. Stroke index was 25 points in total. The higher the scores were, the severer the cerebral injury was. Neurological evaluation was 10 points in total. The higher the scores were, the severer the nerve injury was. ③ Hippocampal tissue in brain of rats were selected to cut into sections at each time points, and form and distribution of neurons were observed in hippocampal areas with HE staining. Degrees of neuronal injury in hippocampal CA1 area were assayed after push-pull at various degrees with electron microscope. ④ Measurement data were compared with t test.MAIN OUTCOME MEASURES:① Stroke index and neurological evaluation; ② form and distribution of neurons in hippocampal areas;③ degrees of neuronal injury in hippocampal CA1 area.RESULTS: A total of 40 rats were involved in the final analysis. ① Stroke index and neurological evaluation of rats in experimental groups: At 30 minutes and 6 hours after push-pull exposure, stroke index and neurological evaluation were higher in ±6Gz group and ±8 Gz group than those in control group (P 〈 0.01), especially at 6 hours after push-pull exposure, those in ±8 Gz group were the highest at each time points [(11.00±2.16), (5.75±1.70) points]. At 24 hours after exposure, those were decreased as compared with those within the former two time points, but the values were still higher than those in control group (P 〈 0.05-0.01). ② Results of HE staining: At 6 and 24 hours after exposure, partially neuronal degeneration was observed in pyramidal layer in ±6 Gz group and ±8 Gz group, including crenation of neurons, tdangle or polygon, and karyopycnosis, especially the injury in ±8 Gz group was the most obvious at 6 hours after exposure. ③ Results of ultrastructure with electron microscope: Partially neuronal degeneration at various degrees was observed in hippocampal CA1 area in ±2 Gz group at 6 hours after exposure and in ±6 Gz group and ±8 Gz group at 6 and 24 hours after exposure. At 6 hours after exposure, nucleus of hippocampal neurons in ±8 Gz group was irregular and umbilication. Caryotin was aggregated, nuclear matrix was swelled and disorder, and vacuolation was also observed. Rough endoplasmic reticulum was expanded, mitochondrium was swelled, and crista was disappeared.CONCLUSION: ① Push-pull cannot damage hippocampal neurons of rats in ±2 Gz group. ② Exposure can cause injury of hippocampal neurons of rats in ±6Gz group and ±8 Gz group, especially the injury is the severest at 6 hours after exposure in ±8 Gz group and relieves gradually 24 hours later.展开更多
Abstract: The method of fractal simulation and classification of folds is firstly studied here to describe various types of complex fold patterns in quantitative analysis. Based on the characteristics of natural folds...Abstract: The method of fractal simulation and classification of folds is firstly studied here to describe various types of complex fold patterns in quantitative analysis. Based on the characteristics of natural folds with a fractal pattern, the fold patterns are simulated to describe various types of folds quantitatively by means of fractal interpolation. The major factors affecting the fold pattern are elucidated in fractal simulation of folds, i.e. positions of interpolation points (x, y) and the disturbance coefficient d of folds (-1<d<1). The bigger the value d for a fold simulation is, the more complex or disturbed the folds are and the better developed the relative secondary folds are. If d>0, folds are upconvex. IF d<0, they are down-convex. |d|=0, |d|=0.25 and |d|=0.5 represent three conspicuous turning states. If |d|=0, the points will be joined by a straight line. If |d|=0.25, the points will be joined smoothly. If |d|<0.25, there will be complex secondary folds between the points. If |d| >0.5, there will be more complex secondary folds between the points. The complex degrees of the fold pattern, therefore, can be classified by the disturbance coefficient d and by the discongruent degree Δ d. In nature, most folds are self-affine fractal folds.展开更多
Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fal...Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fall. The characteristics of free-fall are compared with those of flow past a fixed sphere. Additional numerical tests are conducted with constraints placed on the translational or rotational DOFs of the sphere motion to analyze different DOFs of sphere motion. The transverse motion contributes significantly to the characteristics of free-fall; it results in the retardation of the vortex shedding, leading to the decrease of the Strouhal number. In addition, the transversal sphere motion exhibits the tendency to promote the sphere rotation. On the contrary, the effects of the sphere rotation and vertical oscillations during free-fall are negligible.展开更多
A new kind of quadrilateral assumed stress hy- brid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is est...A new kind of quadrilateral assumed stress hy- brid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is established by expanding the essential terms of the assumed stress field as polynomials in the natural coordinates of the element. The homogeneous equilibrium equations are imposed in a variational sense through the internal displacements which are also expanded in the natural coordinates, while the tractionfree conditions along the inclined side are satisfied exactly. The use of such special element in the finite element solution is shown to be highly accurate when only a very coarse element mesh is used for plates with V-shaped rounded notches or inclined sides.展开更多
A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km...A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 10l~ ~ 1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O(2,-), O(4,-) CO(4,-) and CO(3,-) are the dominant negative species when the initial electron density neo ≤ 1013 cm^(-3), and only electrons and CO3 are left when neo 〉 1015 cm^(-3). N(+,2), N+ and O(+,2) are dominant in the positive charges for any ionization degree. Other positive species, such as 0(+,4), N(+,3), NO(+,2), NO(+,2), Ar(+,2) and H3O+. H2O, are dominant only for a certain ionization degree and in a certain period.展开更多
With the orthogonal design and the finite element methods, the outside stresses acting on the boundary and the inside tectonic stress field before the 1911 Honghai Bay earthquake are obtained. Under these stress field...With the orthogonal design and the finite element methods, the outside stresses acting on the boundary and the inside tectonic stress field before the 1911 Honghai Bay earthquake are obtained. Under these stress fields, the dislocation patterns of the faults are consistent with the observed ones. Using the softening unstabilization model for elastoplastic media to simulate the process of the earthquake occurrence, 5 moderate and strong earthquakes in these areas in this century are simulated. The results show that the moderate or strong earthquake happened only at the sections of the faults whose fault safety degree is zero. According to the present distribution of the fault safety degree, the authors predict the seismic risk zones there.展开更多
This research proposes a new pixel-based model called the hydration-pixel probability model which aims to simplify cement hydration as a probability problem.The hydration capacity of cement,the solution within pores,a...This research proposes a new pixel-based model called the hydration-pixel probability model which aims to simplify cement hydration as a probability problem.The hydration capacity of cement,the solution within pores,and the difiusion of solid particles are represented by three probability functions derived from experimental data obtained through electrical resistivity and hydration heat measurements.The principle of the model is relatively simple,and the parameters have clear physical meanings.In this research,the porous structures of difierent cement pastes with w/c ratios of 0.3,0.4,and 0.5 are investigated.The results indicate that the porosity of the cement paste decreases during the first few hours,followed by a rapid decline,and eventually reaches a steady state.The porosity of the paste decreases as w/c ratio decreases,and the rate of decrease is more rapid in the early stages.Referring to the porosity curves,the average degree of hydration and depth of hydration can be derived.The simulation results show that the hydration degree of paste composed of irregular particles is higher than that of the paste composed of round particles.The trend in the development of the average hydration depth is similar to that of the average hydration degree.Upon analyzing the average growth rate of the hydration depth,it is observed that there are two peaks in the curves,which correspond to the three characteristic points in the electrical resistivity test.展开更多
A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree...A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.展开更多
DNA/GO composite plays a significant role in the research field of biotechnology and nanotechnology,and attracts a great deal of interest.However,it is still unclear how the oxidation degree of the graphene-based surf...DNA/GO composite plays a significant role in the research field of biotechnology and nanotechnology,and attracts a great deal of interest.However,it is still unclear how the oxidation degree of the graphene-based surface affects the adsorption process of single-strand DNA(ssDNA).In this paper,based on the molecular dynamics simulations,we find that ssDNA molecule is absorbed on the GO surface in the most stable state with the oxidation degree around 15%.The microscopic mechanism is attributed to the van Der Walls and the electrostatic interactions between the ssDNA molecule and the graphene-based surface,which is accompanied with theπ-πstacking and hydrogen bond formation.The number ofπ-πstacking between ssDNA and GO reaches the maximum value when the oxidation degree is around 15%among all the GO surfaces.Our simulation results also reveal the coexistence of stretched and curved configurations as well as the adsorption orientation of ssDNA on the GO surface.Furthermore,it is found that the absorbed ssDNA molecules are more likely to move on the graphene-based surface of low oxidation degree,especially on pristine graphene.Our work provides the physics picture of ssDNA’s physisorption dynamics onto graphene-based surface and it is helpful in designing DNA/GO nanomaterials.展开更多
The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerica...The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.展开更多
The structural and aerodynamic performance of the air inlet volute has an important influence on the performance of the gas turbine. On one hand, it requires the airflow flowing through inlet volute as even as possibl...The structural and aerodynamic performance of the air inlet volute has an important influence on the performance of the gas turbine. On one hand, it requires the airflow flowing through inlet volute as even as possible, in order to reduce the pressure loss, to avoid a decrease in the effective output power and an increase of the fuel consumption rate of the internal combustion engine which indicate the inefficiency of the entire power unit;On the other hand, it requires the size of the inlet volute to be as small as possible in order to save mounting space and production costs. The thesis builds the structure model and develops flow fields numerical simulation of several different sizes of the inlet volutes. Further, the unreasonable aerodynamic structure is improved according to the flow field characteristics and thereby, a better aerodynamic performance of the inlet volute is obtained.展开更多
The implementation of a missile's visual simulation system is explained that is developed with OpenGL(open graphic library) and the flight path and flight carriage in different stages of the missile are displayed....The implementation of a missile's visual simulation system is explained that is developed with OpenGL(open graphic library) and the flight path and flight carriage in different stages of the missile are displayed. The establishment problems of the 3D scene are circumstantiated including the construction and redeployment of the model, creation of the virtual scene, setting of the multi-viewports and multi-windows etc. The missile's data driver, system flow, the modules and their mutual relations of the missile visual simulation system are discussed. The missile flight simulation results and effect of the scenes are given.展开更多
基金Funded by the Natural Science Foundation of Heilongjiang Province(No.D0314)
文摘This paper proposes an approach to identify complex parameters describing concrete creep degree based on the simulated annealing (SA) principle.Through the existing engineering examples,the technique for variable perturbation is used to validate the astringency and credibility of the SA algorithm,and the sensitivity ofinvolved parameters to the objective function of the SA algorithm is also analyzed.Further,this study verifies the merits of the approach in simple programming structure,good stability,high calculation rate and accuracy.The SA algorithm should be recommended to apply for the multi-parameters identification of the similar engineering issues.
文摘This paper presents a new nine⁃degree⁃of⁃freedom parallel mechanism,which can be applied as a flight simulator.The mechanism is composed by Stewart turntable and another three⁃axis turntable.The Stewart platform can realize six⁃degree⁃of⁃freedom movement in space,but the working space is limited.After the three⁃axis turntable is installed,the rotation space can be increased to simulate more realistic flight conditions.This paper analyzes the new flight simulator from kinematics and dynamics aspects.In addition,the flight simulator is simulated and analyzed based on the MATLAB/Simulink simulation system.The results obtained from the numerical simulations is planned to be used for the practical manufacturing and applications of the new platform.
文摘BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-pull maneuver at various degrees on injury of hippocampal neurons in rats and analyze its phase effect. DESIGN: Randomized control study.SETTING : Physiological Department of Jilin Medical College.MATERIALS: A total of 40 healthy male Wistar rats, of clean grade, weighting 205-300 g, aged 3-4 months, were randomly divided into control group (n=4) and three push-pull experimental groups, including +2 Gz group (intensity: -2 Gz to +2 Gz, n=12), +6 Gz group (-6 Gz to +6 Gz, n=12) and +8 Gz group (-8 Gz to +8 Gz, n=12).METHODS: The experiment was completed in the Physiological Department of Jilin Military Medical College from March 2002 to May 2003. ① Rats in the experimental groups were put at the specially rolling arm of animal centrifugal machine. Then, they were pushed and pulled with ±2 Gz, ±6 Gz and ±8 Gz, respectively. The jolt was 1 Gz/s. However, rats in control group were not treated with any ways. ② Stroke index and neurological evaluation were performed on rats in the experimental groups at 0.5, 6 and 24 hours after push-pull. Stroke index was 25 points in total. The higher the scores were, the severer the cerebral injury was. Neurological evaluation was 10 points in total. The higher the scores were, the severer the nerve injury was. ③ Hippocampal tissue in brain of rats were selected to cut into sections at each time points, and form and distribution of neurons were observed in hippocampal areas with HE staining. Degrees of neuronal injury in hippocampal CA1 area were assayed after push-pull at various degrees with electron microscope. ④ Measurement data were compared with t test.MAIN OUTCOME MEASURES:① Stroke index and neurological evaluation; ② form and distribution of neurons in hippocampal areas;③ degrees of neuronal injury in hippocampal CA1 area.RESULTS: A total of 40 rats were involved in the final analysis. ① Stroke index and neurological evaluation of rats in experimental groups: At 30 minutes and 6 hours after push-pull exposure, stroke index and neurological evaluation were higher in ±6Gz group and ±8 Gz group than those in control group (P 〈 0.01), especially at 6 hours after push-pull exposure, those in ±8 Gz group were the highest at each time points [(11.00±2.16), (5.75±1.70) points]. At 24 hours after exposure, those were decreased as compared with those within the former two time points, but the values were still higher than those in control group (P 〈 0.05-0.01). ② Results of HE staining: At 6 and 24 hours after exposure, partially neuronal degeneration was observed in pyramidal layer in ±6 Gz group and ±8 Gz group, including crenation of neurons, tdangle or polygon, and karyopycnosis, especially the injury in ±8 Gz group was the most obvious at 6 hours after exposure. ③ Results of ultrastructure with electron microscope: Partially neuronal degeneration at various degrees was observed in hippocampal CA1 area in ±2 Gz group at 6 hours after exposure and in ±6 Gz group and ±8 Gz group at 6 and 24 hours after exposure. At 6 hours after exposure, nucleus of hippocampal neurons in ±8 Gz group was irregular and umbilication. Caryotin was aggregated, nuclear matrix was swelled and disorder, and vacuolation was also observed. Rough endoplasmic reticulum was expanded, mitochondrium was swelled, and crista was disappeared.CONCLUSION: ① Push-pull cannot damage hippocampal neurons of rats in ±2 Gz group. ② Exposure can cause injury of hippocampal neurons of rats in ±6Gz group and ±8 Gz group, especially the injury is the severest at 6 hours after exposure in ±8 Gz group and relieves gradually 24 hours later.
文摘Abstract: The method of fractal simulation and classification of folds is firstly studied here to describe various types of complex fold patterns in quantitative analysis. Based on the characteristics of natural folds with a fractal pattern, the fold patterns are simulated to describe various types of folds quantitatively by means of fractal interpolation. The major factors affecting the fold pattern are elucidated in fractal simulation of folds, i.e. positions of interpolation points (x, y) and the disturbance coefficient d of folds (-1<d<1). The bigger the value d for a fold simulation is, the more complex or disturbed the folds are and the better developed the relative secondary folds are. If d>0, folds are upconvex. IF d<0, they are down-convex. |d|=0, |d|=0.25 and |d|=0.5 represent three conspicuous turning states. If |d|=0, the points will be joined by a straight line. If |d|=0.25, the points will be joined smoothly. If |d|<0.25, there will be complex secondary folds between the points. If |d| >0.5, there will be more complex secondary folds between the points. The complex degrees of the fold pattern, therefore, can be classified by the disturbance coefficient d and by the discongruent degree Δ d. In nature, most folds are self-affine fractal folds.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0304103)the National Natural Science Foundation of China(Grant No.51509152)
文摘Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fall. The characteristics of free-fall are compared with those of flow past a fixed sphere. Additional numerical tests are conducted with constraints placed on the translational or rotational DOFs of the sphere motion to analyze different DOFs of sphere motion. The transverse motion contributes significantly to the characteristics of free-fall; it results in the retardation of the vortex shedding, leading to the decrease of the Strouhal number. In addition, the transversal sphere motion exhibits the tendency to promote the sphere rotation. On the contrary, the effects of the sphere rotation and vertical oscillations during free-fall are negligible.
文摘A new kind of quadrilateral assumed stress hy- brid membrane element with drilling degrees of freedom and a traction-free inclined side has been developed based on an extended Hellinger-Reissner principle which is established by expanding the essential terms of the assumed stress field as polynomials in the natural coordinates of the element. The homogeneous equilibrium equations are imposed in a variational sense through the internal displacements which are also expanded in the natural coordinates, while the tractionfree conditions along the inclined side are satisfied exactly. The use of such special element in the finite element solution is shown to be highly accurate when only a very coarse element mesh is used for plates with V-shaped rounded notches or inclined sides.
基金supported by the Research Foundation of Education Bureau of Hebei Province,China(No.2009308)National Natural Science Foundation of China(No.10805013)the Natural Science Foundation of Hebei Province(Nos.A2011201132,A2009000149)
文摘A zero-dimensional model which includes 56 species of reactants and 427 reactions is used to study the behavior of charged particles in atmospheric plasmas with different ionization degrees at low altitude (near 0 km). The constant coefficient nonlinear equations are solved by using the Quasi-steady-state approximation method. The electron lifetimes are obtained for afterglow plasma with different initial values, and the temporal evolutions of the main charged species are presented, which are dominant in reaction processes. The results show that the electron number density decays quickly. The lifetimes of electrons are shortened by about two orders with increasing ionization degree. Electrons then attach to neutral particles and produce negative ions. When the initial electron densities are in the range of 10l~ ~ 1014 cm-3, the negative ions have sufficiently high densities and long lifetimes for air purification, disinfection and sterilization. Electrons, O(2,-), O(4,-) CO(4,-) and CO(3,-) are the dominant negative species when the initial electron density neo ≤ 1013 cm^(-3), and only electrons and CO3 are left when neo 〉 1015 cm^(-3). N(+,2), N+ and O(+,2) are dominant in the positive charges for any ionization degree. Other positive species, such as 0(+,4), N(+,3), NO(+,2), NO(+,2), Ar(+,2) and H3O+. H2O, are dominant only for a certain ionization degree and in a certain period.
文摘With the orthogonal design and the finite element methods, the outside stresses acting on the boundary and the inside tectonic stress field before the 1911 Honghai Bay earthquake are obtained. Under these stress fields, the dislocation patterns of the faults are consistent with the observed ones. Using the softening unstabilization model for elastoplastic media to simulate the process of the earthquake occurrence, 5 moderate and strong earthquakes in these areas in this century are simulated. The results show that the moderate or strong earthquake happened only at the sections of the faults whose fault safety degree is zero. According to the present distribution of the fault safety degree, the authors predict the seismic risk zones there.
文摘This research proposes a new pixel-based model called the hydration-pixel probability model which aims to simplify cement hydration as a probability problem.The hydration capacity of cement,the solution within pores,and the difiusion of solid particles are represented by three probability functions derived from experimental data obtained through electrical resistivity and hydration heat measurements.The principle of the model is relatively simple,and the parameters have clear physical meanings.In this research,the porous structures of difierent cement pastes with w/c ratios of 0.3,0.4,and 0.5 are investigated.The results indicate that the porosity of the cement paste decreases during the first few hours,followed by a rapid decline,and eventually reaches a steady state.The porosity of the paste decreases as w/c ratio decreases,and the rate of decrease is more rapid in the early stages.Referring to the porosity curves,the average degree of hydration and depth of hydration can be derived.The simulation results show that the hydration degree of paste composed of irregular particles is higher than that of the paste composed of round particles.The trend in the development of the average hydration depth is similar to that of the average hydration degree.Upon analyzing the average growth rate of the hydration depth,it is observed that there are two peaks in the curves,which correspond to the three characteristic points in the electrical resistivity test.
基金the National Natural Science Foundation of China (70471065)the Shanghai Leading Academic Discipline Project (T0502).
文摘A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305237 and 11974366)the Fundamental Research Funds for the Central Universities,China,the Natural Science Foundation of Shanghai,China(Grant No.19ZR1463200)the Key Research Program of Chinese Academy of Sciences(Grant No.QYZDJ-SSW-SLH053).
文摘DNA/GO composite plays a significant role in the research field of biotechnology and nanotechnology,and attracts a great deal of interest.However,it is still unclear how the oxidation degree of the graphene-based surface affects the adsorption process of single-strand DNA(ssDNA).In this paper,based on the molecular dynamics simulations,we find that ssDNA molecule is absorbed on the GO surface in the most stable state with the oxidation degree around 15%.The microscopic mechanism is attributed to the van Der Walls and the electrostatic interactions between the ssDNA molecule and the graphene-based surface,which is accompanied with theπ-πstacking and hydrogen bond formation.The number ofπ-πstacking between ssDNA and GO reaches the maximum value when the oxidation degree is around 15%among all the GO surfaces.Our simulation results also reveal the coexistence of stretched and curved configurations as well as the adsorption orientation of ssDNA on the GO surface.Furthermore,it is found that the absorbed ssDNA molecules are more likely to move on the graphene-based surface of low oxidation degree,especially on pristine graphene.Our work provides the physics picture of ssDNA’s physisorption dynamics onto graphene-based surface and it is helpful in designing DNA/GO nanomaterials.
基金Supported by the National Basic Research Program of China("973" Program,No.2013CB035906)Natural Science Foundation of Tianjin(No.JCYBJC19500)the Foundation of Innovative Research Groups of National Natural Science Foundation of China(No.51321065)
文摘The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.
文摘The structural and aerodynamic performance of the air inlet volute has an important influence on the performance of the gas turbine. On one hand, it requires the airflow flowing through inlet volute as even as possible, in order to reduce the pressure loss, to avoid a decrease in the effective output power and an increase of the fuel consumption rate of the internal combustion engine which indicate the inefficiency of the entire power unit;On the other hand, it requires the size of the inlet volute to be as small as possible in order to save mounting space and production costs. The thesis builds the structure model and develops flow fields numerical simulation of several different sizes of the inlet volutes. Further, the unreasonable aerodynamic structure is improved according to the flow field characteristics and thereby, a better aerodynamic performance of the inlet volute is obtained.
文摘The implementation of a missile's visual simulation system is explained that is developed with OpenGL(open graphic library) and the flight path and flight carriage in different stages of the missile are displayed. The establishment problems of the 3D scene are circumstantiated including the construction and redeployment of the model, creation of the virtual scene, setting of the multi-viewports and multi-windows etc. The missile's data driver, system flow, the modules and their mutual relations of the missile visual simulation system are discussed. The missile flight simulation results and effect of the scenes are given.