Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It be...Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom.As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3 D model for quadruped robot based on spring loaded inverted pendulum(SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.展开更多
The current research of supporting and transmission system in flywheel energy storage system(FESS) focuses on the low consumption design. However, friction loss is a non-negligible factor in the high-speed but lightwe...The current research of supporting and transmission system in flywheel energy storage system(FESS) focuses on the low consumption design. However, friction loss is a non-negligible factor in the high-speed but lightweight FESS energy and momentum storage with mechanical-type supporting system. In order to realize the support system without mechanical loss and to maximize the e ciency of the flywheel battery, a permanent magnet biased magnetic bearings(PMBMB) is applied to the FESS with the advantages of low loss, high critical speed, flexible controllability and compact structure. In this frame, the relevant research of three degrees of freedom(3-DOF) PMBMB for a new type FESS is carried out around the working principle, structural composition, coupling characteristics analysis, mathematical model, and structural design. In order to verify the performance of the 3-DOF PMBMB, the radial force mathematical model and the coupling determination equations of radial two DOF are calculated according to an equivalent magnetic circuit, and radial–axial coupling is analyzed through finite element analysis. Moreover, a control system is presented to solve the control problems in practical applications. The rotor returns to the balanced position in 0.05 s and maintains stable suspension. The displacement fluctuation is approximately 40 μm in the y direction and 30 μm in the x direction. Test results indicate that the dynamic rotor of the proposed flywheel energy storage system with PMBMB has excellent characteristics, such as good start-of-suspension performance and stable suspension characteristics. The proposed research provides the instruction to design and control a low loss support system for FESS.展开更多
A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were c...A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange's equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by62.93% on average, which demonstrates the feasibility of NTESSMDF.展开更多
A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existenc...A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.展开更多
Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attract...Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation.展开更多
A two-degree-of-freedom bifurcation system for an elastic cable with 1:1 internal resonance is investigated in this paper. The transition set of the system is obtained with the singularity theory for three cases. The...A two-degree-of-freedom bifurcation system for an elastic cable with 1:1 internal resonance is investigated in this paper. The transition set of the system is obtained with the singularity theory for three cases. The whole parametric plane is divided into several different persistent regions by the transition set. The bifurcation diagrams in different persistent regions are obtained.展开更多
Nonparametric and parametric subset selection procedures are used in the analysis of state homicide rates (SHRs), for the year 2005 and years 2014-2020, to identify subsets of states that contain the “best” (lowest ...Nonparametric and parametric subset selection procedures are used in the analysis of state homicide rates (SHRs), for the year 2005 and years 2014-2020, to identify subsets of states that contain the “best” (lowest SHR) and “worst” (highest SHR) rates with a prescribed probability. A new Bayesian model is developed and applied to the SHR data and the results are contrasted with those obtained with the subset selection procedures. All analyses are applied within the context of a two-way block design.展开更多
场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedo...场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China(51225503)the National Natural Science Foundation of China(61603076)the Fundamental Research Funds for the Central Universities(ZYGX2016J116)
文摘Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom.As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3 D model for quadruped robot based on spring loaded inverted pendulum(SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51707082,51877101,51607080)Jiangsu Provincial Natural Science Foundation of China(Grant Nos.BK20170546,BK20150510)+1 种基金China Postdoctoral Science Foundation(Grant No.2017M620192)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The current research of supporting and transmission system in flywheel energy storage system(FESS) focuses on the low consumption design. However, friction loss is a non-negligible factor in the high-speed but lightweight FESS energy and momentum storage with mechanical-type supporting system. In order to realize the support system without mechanical loss and to maximize the e ciency of the flywheel battery, a permanent magnet biased magnetic bearings(PMBMB) is applied to the FESS with the advantages of low loss, high critical speed, flexible controllability and compact structure. In this frame, the relevant research of three degrees of freedom(3-DOF) PMBMB for a new type FESS is carried out around the working principle, structural composition, coupling characteristics analysis, mathematical model, and structural design. In order to verify the performance of the 3-DOF PMBMB, the radial force mathematical model and the coupling determination equations of radial two DOF are calculated according to an equivalent magnetic circuit, and radial–axial coupling is analyzed through finite element analysis. Moreover, a control system is presented to solve the control problems in practical applications. The rotor returns to the balanced position in 0.05 s and maintains stable suspension. The displacement fluctuation is approximately 40 μm in the y direction and 30 μm in the x direction. Test results indicate that the dynamic rotor of the proposed flywheel energy storage system with PMBMB has excellent characteristics, such as good start-of-suspension performance and stable suspension characteristics. The proposed research provides the instruction to design and control a low loss support system for FESS.
基金Project(51221462)supported by the National Natural Science Foundation of China for Innovative Research GroupProject(20120095110001)supported by the Doctoral Fund of Ministry of Education of China+1 种基金Project supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,ChinaProject(CXJJ201303)supported by the Innovation Foundation of Xuyi Research and Development Center of Mining Equipment and Materials,China University of Mining and Technology,China
文摘A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom(NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange's equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by62.93% on average, which demonstrates the feasibility of NTESSMDF.
基金supported by the Fundamental Research Funds for the Central Universities(No.N090405009)
文摘A homotopy analysis method(HAM)is presented for the primary resonance of multiple degree-of-freedom systems with strong non-linearity excited by harmonic forces.The validity of the HAM is independent of the existence of small parameters in the considered equation.The HAM provides a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter.Two examples are presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincar'e method and the incremental harmonic balance method.
基金supported by Tianjin Research Program of Application Foundation and Advanced Technology of China (Grant No.11JCZDJC22700)National Natural Science Foundation of China (GrantNo. 51075295,Grant No. 50675151)+1 种基金National High-tech Research and Development Program of China (863 Program,Grant No.2007AA042001)PhD Programs Foundation of Ministry of Education of China (Grant No. 20060056018)
文摘Parallel kinematic machines (PKMs) have the advantages of a compact structure,high stiffness,a low moving inertia,and a high load/weight ratio.PKMs have been intensively studied since the 1980s,and are still attracting much attention.Compared with extensive researches focus on their type/dimensional synthesis,kinematic/dynamic analyses,the error modeling and separation issues in PKMs are not studied adequately,which is one of the most important obstacles in its commercial applications widely.Taking a 3-PRS parallel manipulator as an example,this paper presents a separation method of source errors for 3-DOF parallel manipulator into the compensable and non-compensable errors effectively.The kinematic analysis of 3-PRS parallel manipulator leads to its six-dimension Jacobian matrix,which can be mapped into the Jacobian matrix of actuations and constraints,and then the compensable and non-compensable errors can be separated accordingly.The compensable errors can be compensated by the kinematic calibration,while the non-compensable errors may be adjusted by the manufacturing and assembling process.Followed by the influence of the latter,i.e.,the non-compensable errors,on the pose error of the moving platform through the sensitivity analysis with the aid of the Monte-Carlo method,meanwhile,the configurations of the manipulator are sought as the pose errors of the moving platform approaching their maximum.The compensable and non-compensable errors in limited-DOF parallel manipulators can be separated effectively by means of the Jacobian matrix of actuations and constraints,providing designers with an informative guideline to taking proper measures for enhancing the pose accuracy via component tolerancing and/or kinematic calibration,which can lay the foundation for the error distinguishment and compensation.
基金Project supported by the National Natural Science Foundation of China (No. 10632040)
文摘A two-degree-of-freedom bifurcation system for an elastic cable with 1:1 internal resonance is investigated in this paper. The transition set of the system is obtained with the singularity theory for three cases. The whole parametric plane is divided into several different persistent regions by the transition set. The bifurcation diagrams in different persistent regions are obtained.
文摘Nonparametric and parametric subset selection procedures are used in the analysis of state homicide rates (SHRs), for the year 2005 and years 2014-2020, to identify subsets of states that contain the “best” (lowest SHR) and “worst” (highest SHR) rates with a prescribed probability. A new Bayesian model is developed and applied to the SHR data and the results are contrasted with those obtained with the subset selection procedures. All analyses are applied within the context of a two-way block design.
文摘场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。