A reconfigurable propulsion unit based on the Peaucellier-Lipkin mechanism has the ability to describe exact straight or curved paths depending on the selected ratio between the lengths of two of its links. The Peauce...A reconfigurable propulsion unit based on the Peaucellier-Lipkin mechanism has the ability to describe exact straight or curved paths depending on the selected ratio between the lengths of two of its links. The Peaucellier-Lipkin mechanism with one degree of freedom is transformed into a more sophisticated parallel kinematic chain by including four more degrees of freedom. The resulting propulsion unit is able to adapt its kinematic structure and reach instant centers of rotation, in accordance with the presence of three points that border a geometric path. A laser sensor mounted on the body of the machine detects each point. Once the machine has detected the exact location of the border of the road, it walks along a curve parallel to that border. Although the proposed research describes only one propulsion unit or leg, the methodology can be applied to all the legs of the walking machine. The novel 5-DOF leg is able to reach different centers of rotation, providing either the concave or convex arcs that satisfy the basic principle of displacement of walking machines.展开更多
The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhi...The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhile, its load capacity also affects its application range. To reduce the power consumption, increase the load to mass ratio, and improve the stability of robot, the relationship between the walking modes and the forces of feet under the tripod gait are researched for an electrically driven heavy-duty six-legged robot. Based on the configuration characteristics of electrically driven heavy-duty six-legged, the typical walking modes of robot are analyzed. The mathematical models of the normal forces of feet are respectively established under the tripod gait of typical walking modes. According to the MATLAB software, the variable tendency charts are respectively gained for the normal forces of feet. The walking experiments under the typical tripod gaits are implemented for the prototype of electrically driven heavy-duty six-legged robot. The variable tendencies of maximum normal forces of feet are acquired. The comparison results show that the theoretical and experimental data are in the same trend. The walking modes which are most available to realize the average force of distribution of each foot are confirmed. The proposed method of analyzing the relationship between the walking modes and the forces of feet can quickly determine the optimal walking mode and gait parameters under the average distribution of foot force, which is propitious to develop the excellent heavy-duty multi-legged robots with the lower power consumption, larger load to mass ratio, and higher stability.展开更多
This paper presents our efforts to explain why mammals have large thigh muscles while insects have small ones. After a discussion of this observation a definition of body foot ratio is defined which describes how anim...This paper presents our efforts to explain why mammals have large thigh muscles while insects have small ones. After a discussion of this observation a definition of body foot ratio is defined which describes how animals stand and how their legs are arranged. To investigate the mechanics, we present a closed optimum solution of the body foot ratio for a 2D two-leg walking machine. A multi-walker is used as a case for 3D general analysis, and the numerical simulation is presented. Both 2D and 3D case studies can explain the above observations of mammals and insects. These findings can also be used as a guide for the design of man-made limbed machines.展开更多
This paper considers the geometric design of crab-like walkers and climbers, without decoupling leg design from overall machine design. Crab-like machines represent an important sub-class of multi-legged robots, bein...This paper considers the geometric design of crab-like walkers and climbers, without decoupling leg design from overall machine design. Crab-like machines represent an important sub-class of multi-legged robots, being particularly well suited to crossing difficult terrains. Firstly, the kinematic configurations and constraints are described, which determine the machine’s kinematic characteristics. The influence of the design parameters on the kinematic workspace is discussed. Finally, a two stage design methodology is presented, comprising kinematic design and design optimisation, the latter being based on the use of design maps rather than numerical optimisation. The performance measures considered during design optimisation include kinematic, static and quasi-static measures.展开更多
Considering the interlayer height, luggage, the difference between queuing pedestrians, and walking speed, the pedestrian choice model of vertical walking facilities is established based on a support vector machine. T...Considering the interlayer height, luggage, the difference between queuing pedestrians, and walking speed, the pedestrian choice model of vertical walking facilities is established based on a support vector machine. This model is verified with the pedestrian flow data of Changchun light-rail transfer station and Beijing Xizhimen transfer station. Adding the pedestrian choice model of vertical walking facilities into the pedestrian simulation model which is based on cellular automata, the pedestrian choice behavior is simulated. In the simulation, the effects of the dynamic influence factors are analyzed. To reduce the conflicts between pedestrians in opposite directions, the layout of vertical walking facilities is improved. The simulations indicate that the improved layout of vertical walking facilities can improve the efficiency of pedestrians passing.展开更多
The problem of walking machine leg transfer is considered.Optimal laws of transfer are determined with regard to geometrical features ofgroundand underwater.Complex optimality criterion is introduced as the sum of ind...The problem of walking machine leg transfer is considered.Optimal laws of transfer are determined with regard to geometrical features ofgroundand underwater.Complex optimality criterion is introduced as the sum of indexes of quality of the movement multiplied each by weight coefficients.The solution is provided based on the walking machine“Ortonog.”展开更多
This paper explores the design of leg morphology in a six-legged robot.Inspired by nature,where animals have different leg morphology,we examined how the difference in leg morphology influences behaviors of the robot....This paper explores the design of leg morphology in a six-legged robot.Inspired by nature,where animals have different leg morphology,we examined how the difference in leg morphology influences behaviors of the robot.To this end,a systematic search was conducted by scanning over the parameter space consisting of default angles of leg joints of the six-legged robot,with two main objectives:to maximize the kinematic flexibility and walking performance of the robot.Results show that(1)to have a high kinematic flexibility with both the torso and swing legs,the femur segment should tilt downwards by 5°-10°and the tibia segment should be vertically downwards or with a slight inward tilt;(2)to achieve relatively energy-efficient and steady walking,the tibia segment should be approximately vertically downwards,with the femur segment tilting upwards to lower the torso height.The results of this study suggest that behaviors of legged robots can be passively enhanced by careful mechanical design choices,thereby leading to more competent legged machines.展开更多
As an important branch of machine learning,clustering analysis is widely used in some fields,e.g.,image pattern recognition,social network analysis,information security,and so on.In this paper,we consider the designin...As an important branch of machine learning,clustering analysis is widely used in some fields,e.g.,image pattern recognition,social network analysis,information security,and so on.In this paper,we consider the designing of clustering algorithm in quantum scenario,and propose a quantum hierarchical agglomerative clustering algorithm,which is based on one dimension discrete quantum walk with single-point phase defects.In the proposed algorithm,two nonclassical characters of this kind of quantum walk,localization and ballistic effects,are exploited.At first,each data point is viewed as a particle and performed this kind of quantum walk with a parameter,which is determined by its neighbors.After that,the particles are measured in a calculation basis.In terms of the measurement result,every attribute value of the corresponding data point is modified appropriately.In this way,each data point interacts with its neighbors and moves toward a certain center point.At last,this process is repeated several times until similar data points cluster together and form distinct classes.Simulation experiments on the synthetic and real world data demonstrate the effectiveness of the presented algorithm.Compared with some classical algorithms,the proposed algorithm achieves better clustering results.Moreover,combining quantum cluster assignment method,the presented algorithm can speed up the calculating velocity.展开更多
基金Supported by Postgraduate Department of School of Mechanical Engineering,Universidad Michoacana de San Nicolás de Hidalgo,Francisco J.Múgica S/N Ciudad Universitaria,C.P.58030,Morelia,Michoacán,México
文摘A reconfigurable propulsion unit based on the Peaucellier-Lipkin mechanism has the ability to describe exact straight or curved paths depending on the selected ratio between the lengths of two of its links. The Peaucellier-Lipkin mechanism with one degree of freedom is transformed into a more sophisticated parallel kinematic chain by including four more degrees of freedom. The resulting propulsion unit is able to adapt its kinematic structure and reach instant centers of rotation, in accordance with the presence of three points that border a geometric path. A laser sensor mounted on the body of the machine detects each point. Once the machine has detected the exact location of the border of the road, it walks along a curve parallel to that border. Although the proposed research describes only one propulsion unit or leg, the methodology can be applied to all the legs of the walking machine. The novel 5-DOF leg is able to reach different centers of rotation, providing either the concave or convex arcs that satisfy the basic principle of displacement of walking machines.
基金Supported by National Natural Science Foundation of China(Grant Nos.51505335,51275106)National Basic Research Program of China(973Program,Grant No.2013CB035502)
文摘The electrically driven six-legged robot with high carrying capacity is an indispensable equipment for planetary exploration, but it hinders its practicability because of its low efficiency of carrying energy. Meanwhile, its load capacity also affects its application range. To reduce the power consumption, increase the load to mass ratio, and improve the stability of robot, the relationship between the walking modes and the forces of feet under the tripod gait are researched for an electrically driven heavy-duty six-legged robot. Based on the configuration characteristics of electrically driven heavy-duty six-legged, the typical walking modes of robot are analyzed. The mathematical models of the normal forces of feet are respectively established under the tripod gait of typical walking modes. According to the MATLAB software, the variable tendency charts are respectively gained for the normal forces of feet. The walking experiments under the typical tripod gaits are implemented for the prototype of electrically driven heavy-duty six-legged robot. The variable tendencies of maximum normal forces of feet are acquired. The comparison results show that the theoretical and experimental data are in the same trend. The walking modes which are most available to realize the average force of distribution of each foot are confirmed. The proposed method of analyzing the relationship between the walking modes and the forces of feet can quickly determine the optimal walking mode and gait parameters under the average distribution of foot force, which is propitious to develop the excellent heavy-duty multi-legged robots with the lower power consumption, larger load to mass ratio, and higher stability.
文摘This paper presents our efforts to explain why mammals have large thigh muscles while insects have small ones. After a discussion of this observation a definition of body foot ratio is defined which describes how animals stand and how their legs are arranged. To investigate the mechanics, we present a closed optimum solution of the body foot ratio for a 2D two-leg walking machine. A multi-walker is used as a case for 3D general analysis, and the numerical simulation is presented. Both 2D and 3D case studies can explain the above observations of mammals and insects. These findings can also be used as a guide for the design of man-made limbed machines.
文摘This paper considers the geometric design of crab-like walkers and climbers, without decoupling leg design from overall machine design. Crab-like machines represent an important sub-class of multi-legged robots, being particularly well suited to crossing difficult terrains. Firstly, the kinematic configurations and constraints are described, which determine the machine’s kinematic characteristics. The influence of the design parameters on the kinematic workspace is discussed. Finally, a two stage design methodology is presented, comprising kinematic design and design optimisation, the latter being based on the use of design maps rather than numerical optimisation. The performance measures considered during design optimisation include kinematic, static and quasi-static measures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51278221 and 51378076)the Science Technology Development Project of Jilin Province,China(Grant No.20140204027SF)
文摘Considering the interlayer height, luggage, the difference between queuing pedestrians, and walking speed, the pedestrian choice model of vertical walking facilities is established based on a support vector machine. This model is verified with the pedestrian flow data of Changchun light-rail transfer station and Beijing Xizhimen transfer station. Adding the pedestrian choice model of vertical walking facilities into the pedestrian simulation model which is based on cellular automata, the pedestrian choice behavior is simulated. In the simulation, the effects of the dynamic influence factors are analyzed. To reduce the conflicts between pedestrians in opposite directions, the layout of vertical walking facilities is improved. The simulations indicate that the improved layout of vertical walking facilities can improve the efficiency of pedestrians passing.
基金The reported study was funded by RFBR,project number 19-31-90112.
文摘The problem of walking machine leg transfer is considered.Optimal laws of transfer are determined with regard to geometrical features ofgroundand underwater.Complex optimality criterion is introduced as the sum of indexes of quality of the movement multiplied each by weight coefficients.The solution is provided based on the walking machine“Ortonog.”
基金This work was supported by Natural Science Foundation of China(Grant Nos.51805074,U1713201 and 51605082)State Key Laboratory of Robotics and System(HIT)(Grant Nos.SKLRS-2018-KF-02 and SKLRS-2017-KF-07)+2 种基金China Postdoctoral Science Foundation(Grant Nos.2018M631799 and 2019T120213)Fundamental Research Funds for the Central Universities(Grant Nos.N 170303007 and N 180304015)Postdoctoral Science Foundation of Northeastern University(Grant No.20180311).
文摘This paper explores the design of leg morphology in a six-legged robot.Inspired by nature,where animals have different leg morphology,we examined how the difference in leg morphology influences behaviors of the robot.To this end,a systematic search was conducted by scanning over the parameter space consisting of default angles of leg joints of the six-legged robot,with two main objectives:to maximize the kinematic flexibility and walking performance of the robot.Results show that(1)to have a high kinematic flexibility with both the torso and swing legs,the femur segment should tilt downwards by 5°-10°and the tibia segment should be vertically downwards or with a slight inward tilt;(2)to achieve relatively energy-efficient and steady walking,the tibia segment should be approximately vertically downwards,with the femur segment tilting upwards to lower the torso height.The results of this study suggest that behaviors of legged robots can be passively enhanced by careful mechanical design choices,thereby leading to more competent legged machines.
基金This work was supported by National Natural Science Foundation of China(Grants Nos.61976053 and 61772134)Fujian Province Natural Science Foundation(Grant No.2018J01776)+1 种基金Program for New Century Excellent Talents in Fujian Province University,Probability and Statistics:Theory and Application(Grant No.IRTL1704)the Program for Innovative Research Team in Science and Technology in Fujian Province University.
文摘As an important branch of machine learning,clustering analysis is widely used in some fields,e.g.,image pattern recognition,social network analysis,information security,and so on.In this paper,we consider the designing of clustering algorithm in quantum scenario,and propose a quantum hierarchical agglomerative clustering algorithm,which is based on one dimension discrete quantum walk with single-point phase defects.In the proposed algorithm,two nonclassical characters of this kind of quantum walk,localization and ballistic effects,are exploited.At first,each data point is viewed as a particle and performed this kind of quantum walk with a parameter,which is determined by its neighbors.After that,the particles are measured in a calculation basis.In terms of the measurement result,every attribute value of the corresponding data point is modified appropriately.In this way,each data point interacts with its neighbors and moves toward a certain center point.At last,this process is repeated several times until similar data points cluster together and form distinct classes.Simulation experiments on the synthetic and real world data demonstrate the effectiveness of the presented algorithm.Compared with some classical algorithms,the proposed algorithm achieves better clustering results.Moreover,combining quantum cluster assignment method,the presented algorithm can speed up the calculating velocity.