Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ...Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analys...Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.展开更多
The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling u...The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling uncertainty, and dealing with missing data, the Bayesian structural equation model demonstrates unique advantages. Therefore, Bayesian methods are used in this paper to establish a structural equation model of innovative talent cognition, with the measurement of college students’ cognition of innovative talent being studied. An in-depth analysis is conducted on the effects of innovative self-efficacy, social resources, innovative personality traits, and school education, aiming to explore the factors influencing college students’ innovative talent. The results indicate that innovative self-efficacy plays a key role in perception, social resources are significantly positively correlated with the perception of innovative talents, innovative personality tendencies and school education are positively correlated with the perception of innovative talents, but the impact is not significant.展开更多
With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching a...With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.展开更多
Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the...Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp...Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constru...This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constructs a Sino-US container shipping network through voyage weighting and analyzes the essential structural characteristics to explore the network’s complex structural fea-tures.The network’s evolution is examined from three perspectives,namely,time,space,and event influence,aiming to comprehens-ively explore the network’s evolution mechanism.The results revealed that:1)the weighted Sino-US container shipping network exhib-its small-world and scale-free properties.Key hub ports in the United States include NEW YORK NY,SAVANNAH GA,LOS ANGELES CA,and OAKLAND CA,whereas SHANGHAI serving as the hub port in China.The geographical distribution of these hub ports is uneven.2)Concerning the evolution of the weighted Sino-US container shipping network,from a temporal perspective,the evolution of the regional structure of the entire Sino-US region and the Inland United States is in a stage of radiative expansion and de-velopment,with a need for further enhancement in competitiveness and development speed.The evolution of the regional structure of southern China and Europe is transitioning from the stage of radiative expansion and development to an advanced equilibrium stage.The shipping development in Northern China,the Western and Eastern United States,and Asia is undergoing significant changes but faces challenges of fierce competition and imbalances.From a spatial perspective,the rationality and effectiveness of the improved weighted Barrat-Barthelemy-Vespignani(BBV)model are confirmed through theoretical derivation.The applicability of the improved evolution model is verified by simulating the evolution of the weighted Sino-US container shipping network.From an event impact per-spective,the Corona Virus Disease 2019(COVID-19)pandemic has not fundamentally affected the spatial pattern of the weighted Sino-US container shipping network but has significantly impacted the network’s connectivity.The network lacks sufficient resilience and stability in emergency situations.3)Based on the analysis of the structural characteristics and evolution of the weighted Sino-US con-tainer shipping network,recommendations for network development are proposed from three aspects:emphasizing the development of hub ports,focusing on the balanced development of the network,and optimizing the layout of Chinese ports.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults...The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic int...The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
基金This work presented in this paper was funded by the National Natural Science Foundation of China(Grant Nos.51478031 and 51278046)Shenzhen Science and Technology Innovation Fund(Grant No.FA24405041).The authors are grateful to the editor and reviewers for discerning comments on this paper.
文摘Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
文摘Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.
文摘The Bayesian structural equation model integrates the principles of Bayesian statistics, providing a more flexible and comprehensive modeling framework. In exploring complex relationships between variables, handling uncertainty, and dealing with missing data, the Bayesian structural equation model demonstrates unique advantages. Therefore, Bayesian methods are used in this paper to establish a structural equation model of innovative talent cognition, with the measurement of college students’ cognition of innovative talent being studied. An in-depth analysis is conducted on the effects of innovative self-efficacy, social resources, innovative personality traits, and school education, aiming to explore the factors influencing college students’ innovative talent. The results indicate that innovative self-efficacy plays a key role in perception, social resources are significantly positively correlated with the perception of innovative talents, innovative personality tendencies and school education are positively correlated with the perception of innovative talents, but the impact is not significant.
文摘With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.
文摘Ceramic relief mural is a contemporary landscape art that is carefully designed based on human nature,culture,and architectural wall space,combined with social customs,visual sensibility,and art.It may also become the main axis of ceramic art in the future.Taiwan public ceramic relief murals(PCRM)are most distinctive with the PCRM pioneered by Pan-Hsiung Chu of Meinong Kiln in 1987.In addition to breaking through the limitations of traditional public ceramic murals,Chu leveraged local culture and sensibility.The theme of art gives PCRM its unique style and innovative value throughout the Taiwan region.This study mainly analyzes and understands the design image of public ceramic murals,taking Taiwan PCRM’s design and creation as the scope,and applies STEEP analysis,that is,the social,technological,economic,ecological,and political-legal environments are analyzed as core factors;eight main important factors in the artistic design image of ceramic murals are evaluated.Then,interpretive structural modeling(ISM)is used to establish five levels,analyze the four main problems in the main core factor area and the four main target results in the affected factor area;and analyze the problem points and target points as well as their causal relationships.It is expected to sort out the relationship between these factors,obtain the hierarchical relationship of each factor,and provide a reference basis and research methods.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
基金the National Natural Science Foundation of China(Nos.62272063,62072056 and 61902041)the Natural Science Foundation of Hunan Province(Nos.2022JJ30617 and 2020JJ2029)+4 种基金Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications(No.JZNY202102)the Traffic Science and Technology Project of Hunan Province,China(No.202042)Hunan Provincial Key Research and Development Program(No.2022GK2019)this work was funded by the Researchers Supporting Project Number(RSPD2023R681)King Saud University,Riyadh,Saudi Arabia.
文摘Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
基金Under the auspices of National Natural Science Foundation of China(No.41201473,41371975)。
文摘This study selected the Sino-US route data from the top 30 global container liner companies between December 1,2019,and December 29,2019,as the data source utilizing the complex network research methodology.It constructs a Sino-US container shipping network through voyage weighting and analyzes the essential structural characteristics to explore the network’s complex structural fea-tures.The network’s evolution is examined from three perspectives,namely,time,space,and event influence,aiming to comprehens-ively explore the network’s evolution mechanism.The results revealed that:1)the weighted Sino-US container shipping network exhib-its small-world and scale-free properties.Key hub ports in the United States include NEW YORK NY,SAVANNAH GA,LOS ANGELES CA,and OAKLAND CA,whereas SHANGHAI serving as the hub port in China.The geographical distribution of these hub ports is uneven.2)Concerning the evolution of the weighted Sino-US container shipping network,from a temporal perspective,the evolution of the regional structure of the entire Sino-US region and the Inland United States is in a stage of radiative expansion and de-velopment,with a need for further enhancement in competitiveness and development speed.The evolution of the regional structure of southern China and Europe is transitioning from the stage of radiative expansion and development to an advanced equilibrium stage.The shipping development in Northern China,the Western and Eastern United States,and Asia is undergoing significant changes but faces challenges of fierce competition and imbalances.From a spatial perspective,the rationality and effectiveness of the improved weighted Barrat-Barthelemy-Vespignani(BBV)model are confirmed through theoretical derivation.The applicability of the improved evolution model is verified by simulating the evolution of the weighted Sino-US container shipping network.From an event impact per-spective,the Corona Virus Disease 2019(COVID-19)pandemic has not fundamentally affected the spatial pattern of the weighted Sino-US container shipping network but has significantly impacted the network’s connectivity.The network lacks sufficient resilience and stability in emergency situations.3)Based on the analysis of the structural characteristics and evolution of the weighted Sino-US con-tainer shipping network,recommendations for network development are proposed from three aspects:emphasizing the development of hub ports,focusing on the balanced development of the network,and optimizing the layout of Chinese ports.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
文摘The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by the National Natural Science Foundation of China(Grant Nos.41572187,41972219,41927802 and 42072320)the China Postdoctoral Science Foundation(Grant No.2020M671432)。
文摘The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.