The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures...The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.展开更多
With the modernization of industrial production,various automatic following technologies have gradually penetrated into people's lives.Among them,the application fields that follow mobile balancing vehicles range ...With the modernization of industrial production,various automatic following technologies have gradually penetrated into people's lives.Among them,the application fields that follow mobile balancing vehicles range from the structured environment of factories to the daily living environment.The purpose of this subject is to be able to use UWB positioning technology to realize that the balanced trolley is an automatic following function,which mainly uses the ranging function in UWB positioning technology,uses the TOF ranging principle and embedded basic knowledge,and changes the positioning algorithm to a following algorithm.The distance between the target object and the person is effectively determined by two tags set on the trolley and a base station in the hand to determine the distance,and the distance information is transmitted through the serial port.By writing an algorithm,the distance information is converted to the driving information of the trolley,and the driving information is sent to the trolley to control the trolley,thereby realizing the task of balancing the trolley to follow the specified target in a simple indoor environment.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
This paper makes a tentative study of the politeness strategies stressed in the choice of address forms in Chinese,American and Japanese culture under the guidance of Politeness Principle by Brown and Levinson.Through...This paper makes a tentative study of the politeness strategies stressed in the choice of address forms in Chinese,American and Japanese culture under the guidance of Politeness Principle by Brown and Levinson.Through a comprehensive analysis,It is concluded that the major function of English address forms is to indicate solidarity and realize positive politeness,In contrast,both Chinese and Japanese address forms emphasize deference and help achieve negative politeness;It is the author's hope that a better understanding of these addressing rules in different cultures will benefit effective use of these languages and help avoid miscommunication in intercultural communication.展开更多
In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical expo...In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.展开更多
The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the...The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。展开更多
文摘The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.
文摘With the modernization of industrial production,various automatic following technologies have gradually penetrated into people's lives.Among them,the application fields that follow mobile balancing vehicles range from the structured environment of factories to the daily living environment.The purpose of this subject is to be able to use UWB positioning technology to realize that the balanced trolley is an automatic following function,which mainly uses the ranging function in UWB positioning technology,uses the TOF ranging principle and embedded basic knowledge,and changes the positioning algorithm to a following algorithm.The distance between the target object and the person is effectively determined by two tags set on the trolley and a base station in the hand to determine the distance,and the distance information is transmitted through the serial port.By writing an algorithm,the distance information is converted to the driving information of the trolley,and the driving information is sent to the trolley to control the trolley,thereby realizing the task of balancing the trolley to follow the specified target in a simple indoor environment.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
文摘This paper makes a tentative study of the politeness strategies stressed in the choice of address forms in Chinese,American and Japanese culture under the guidance of Politeness Principle by Brown and Levinson.Through a comprehensive analysis,It is concluded that the major function of English address forms is to indicate solidarity and realize positive politeness,In contrast,both Chinese and Japanese address forms emphasize deference and help achieve negative politeness;It is the author's hope that a better understanding of these addressing rules in different cultures will benefit effective use of these languages and help avoid miscommunication in intercultural communication.
基金supported by the NNSF of China(12171014, 12271539, 12171326)the Beijing Municipal Commission of Education (KZ202010028048)the Research Foundation for Advanced Talents of Beijing Technology and Business University (19008022326)。
文摘In this paper, we study the Schrodinger equations (-△)^(s)u + V(x)u = a(x)|u|^(p-2)u + b(x)|u|^(q-2)u, x∈R^(N),where 0 < s < 1, 2 < q < p < 2_(s)^(*), 2_(s)^(*) is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.
基金the National Natural Science Foundation of China(No.51965032)the Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)the Excellent Doctoral Student Foundation of Gansu Province of China(No.23JRRA842).
文摘The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。