The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi...Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores.展开更多
In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on pe...In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.展开更多
The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining...The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
In the light of the theory of constructivism, the interactive web-based college English teaching model is intended to facilitate "autonomy", "inquiry" and "cooperation" in learning English. This paper presents a...In the light of the theory of constructivism, the interactive web-based college English teaching model is intended to facilitate "autonomy", "inquiry" and "cooperation" in learning English. This paper presents a research in which the interactive web-based college English teaching model intends to reshape the teacher's and learner's roles in the classroom. Based on the research, an exploration is made --- within the framework of the interactive web-based model --- on the design of "teaching model" and "learning model", its application and related potential problems.展开更多
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of...Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.展开更多
An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rai...An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort.展开更多
Abstract: Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theor...Abstract: Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theory for companies in China, provides both conceptual and procedural knowledge for finding and solving inventive problems. Because the government plays a leading role in the diffusion of TRIZ, too many companies from different industries are waiting to be trained, but the quantity of the trainers mastering TRIZ is incompatible with that requirement. In this context, to improve the training effect, an interactive training model of TRIZ for the mechanical engineers in China is developed and the implementation in the form of training classes is carried out. The training process is divided into 6 phases as follows: selecting engineers, training stage-l, finding problems, training stage-2, finding solutions and summing up. The government, TRIZ institutions and companies to join the programs interact during the process. The government initiates and monitors a project in form of a training class of TRIZ and selects companies to join the programs. Each selected companies choose a few engineers to join the class and supervises the training result. The TRIZ institutions design the training courses and carry out training curriculum. With the beginning of the class, an effective communication channel is established by means of interview, discussion face to face, E-mail, QQ and so on. After two years training practices, the results show that innovative abilities of the engineers to join and pass the final examinations increased distinctly, and most of companies joined the training class have taken congnizance of the power of TRIZ for product innovation. This research proposes an interactive training model of TRIZ for mechanical engineers in China to expedite the knowledge diffusion of TRIZ.展开更多
Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics.Several methods for the implicit surface reconstruction from surface ...Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics.Several methods for the implicit surface reconstruction from surface points have been proposed on the basis of radial basis functions,a weighted sum of local functions,splines,wavelets,and combinations of them.However,if the surface points contain errors or are sparsely distributed,irregular components,such as curvature-shaped redundant bulges and unexpectedly generated high-frequency components,are commonly seen.This paper presents a framework for restoring irregular components generated on and around surfaces.Users are assumed to specify local masks that cover irregular components and parameters that determine the degree of restoration.The algorithm in this paper removes the defects based on the user-specific masks and parameters.Experiments have shown that the proposed methods can effectively remove redundant protrusions and jaggy noise.展开更多
A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this...A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this paper is to propose some efficient and accurate numerical methods for the computational solution of one-dimensional continuous basic models for the growth and control of brain tumors. After computing the analytical solution, we construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization. Then, we investigate the convergence behavior of Conjugate gradient and generalized minimum residual as Krylov subspace methods to solve the tridiagonal toeplitz matrix system derived.展开更多
Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activit...Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays.展开更多
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an indi...We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.展开更多
The Standard Model in Particle Physics has been able to make many predictions confirmed later with a flow of experimental results. With the discovery of the Higgs boson at the LHC, one is full of admiration for the pe...The Standard Model in Particle Physics has been able to make many predictions confirmed later with a flow of experimental results. With the discovery of the Higgs boson at the LHC, one is full of admiration for the people contributing to this model fifty years ago and its predictions that have been confirmed gradually. The original particle quark constituent model has evolved with the deep inelastic experiments to a quark and gluons system, then to a more general system with virtual quarks. This work is the result of observations while working at CERN in Geneva with many different experiments at the ISR, SPS, LEP, LHC colliders. A new model based on nuons is introduced, that allows accurate evaluations of the particle masses (mesons and baryons) and magnetic moment, computes very accurately the kinematics distributions for particles and jets observed in the p-p collisions at the LHC (elastic and inelastic) and at lower energy machines. This new model looks at a first glance in contradiction with the quark model because it can build the elementary particles with nuons only, i.e. electrons and neutrinos. However, all the existing physics involved in electron, positron and neutrino interactions may be used to explain interactions between composite particles such as protons or heavy ions.展开更多
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m...N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.展开更多
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u...A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).展开更多
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ...The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.展开更多
A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto...A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
基金financially supported by the General Program Grant from the National Natural Science Foundation of China(52274051 and 52174045)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51521063)。
文摘Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores.
文摘In this paper, we study the flocking behavior of a thermodynamic Cucker–Smale model with local velocity interactions. Using the spectral gap of a connected stochastic matrix, together with an elaborate estimate on perturbations of a linearized system, we provide a sufficient framework in terms of initial data and model parameters to guarantee flocking. Moreover, it is shown that the system achieves a consensus at an exponential rate.
基金supported by the start-up funding from Tsinghua University(Grant No.100005014).
文摘The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
文摘In the light of the theory of constructivism, the interactive web-based college English teaching model is intended to facilitate "autonomy", "inquiry" and "cooperation" in learning English. This paper presents a research in which the interactive web-based college English teaching model intends to reshape the teacher's and learner's roles in the classroom. Based on the research, an exploration is made --- within the framework of the interactive web-based model --- on the design of "teaching model" and "learning model", its application and related potential problems.
文摘Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
基金Base Funding-UIDB/04708/2020 and Programmatic Funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Grant no.2020.00305.CEECIND from the Stimulus of Scientific Employment,Individual Support(CEECIND)-3rd Edition provided by“FCT-Fundação para a Ciência e Tecnologia.”。
文摘An enhancement in the wheel-rail contact model used in a nonlinear vehicle-structure interaction(VSI)methodology for railway applications is presented,in which the detection of the contact points between wheel and rail in the concave region of the thread-flange transition is implemented in a simplified way.After presenting the enhanced formulation,the model is validated with two numerical applications(namely,the Manchester Benchmarks and a hunting stability problem of a sus-pended wheelset),and one experimental test performed in a test rig from the Railway Technical Research Institute(RTRI)in Japan.Given its finite element(FE)nature,and contrary to most of the vehicle multibody dynamic commercial software that cannot account for the infrastructure flexibility,the proposed VSI model can be easily used in the study of train-bridge systems with any degree of complexity.The validation presented in this work proves the accuracy of the proposed model,making it a suitable tool for dealing with different railway dynamic applications,such as the study of bridge dynamics,train running safety under different scenarios(namely,earthquakes and crosswinds,among others),and passenger riding comfort.
基金supported by National Natural Science Foundation of China(Grant Nos.51275153,51105128)National Innovation Project of China(Grant No.2011IM010200)Social Science Planning Fund Program of Hebei Province,China(Grant No.HB13GL050)
文摘Abstract: Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theory for companies in China, provides both conceptual and procedural knowledge for finding and solving inventive problems. Because the government plays a leading role in the diffusion of TRIZ, too many companies from different industries are waiting to be trained, but the quantity of the trainers mastering TRIZ is incompatible with that requirement. In this context, to improve the training effect, an interactive training model of TRIZ for the mechanical engineers in China is developed and the implementation in the form of training classes is carried out. The training process is divided into 6 phases as follows: selecting engineers, training stage-l, finding problems, training stage-2, finding solutions and summing up. The government, TRIZ institutions and companies to join the programs interact during the process. The government initiates and monitors a project in form of a training class of TRIZ and selects companies to join the programs. Each selected companies choose a few engineers to join the class and supervises the training result. The TRIZ institutions design the training courses and carry out training curriculum. With the beginning of the class, an effective communication channel is established by means of interview, discussion face to face, E-mail, QQ and so on. After two years training practices, the results show that innovative abilities of the engineers to join and pass the final examinations increased distinctly, and most of companies joined the training class have taken congnizance of the power of TRIZ for product innovation. This research proposes an interactive training model of TRIZ for mechanical engineers in China to expedite the knowledge diffusion of TRIZ.
文摘Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics.Several methods for the implicit surface reconstruction from surface points have been proposed on the basis of radial basis functions,a weighted sum of local functions,splines,wavelets,and combinations of them.However,if the surface points contain errors or are sparsely distributed,irregular components,such as curvature-shaped redundant bulges and unexpectedly generated high-frequency components,are commonly seen.This paper presents a framework for restoring irregular components generated on and around surfaces.Users are assumed to specify local masks that cover irregular components and parameters that determine the degree of restoration.The algorithm in this paper removes the defects based on the user-specific masks and parameters.Experiments have shown that the proposed methods can effectively remove redundant protrusions and jaggy noise.
文摘A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this paper is to propose some efficient and accurate numerical methods for the computational solution of one-dimensional continuous basic models for the growth and control of brain tumors. After computing the analytical solution, we construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization. Then, we investigate the convergence behavior of Conjugate gradient and generalized minimum residual as Krylov subspace methods to solve the tridiagonal toeplitz matrix system derived.
文摘Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays.
基金supported by National Natural Science Foundation of China (No.60775044)the Program for New Century Excellent Talentsin University (No.NCET-07-0802)
文摘We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.
文摘The Standard Model in Particle Physics has been able to make many predictions confirmed later with a flow of experimental results. With the discovery of the Higgs boson at the LHC, one is full of admiration for the people contributing to this model fifty years ago and its predictions that have been confirmed gradually. The original particle quark constituent model has evolved with the deep inelastic experiments to a quark and gluons system, then to a more general system with virtual quarks. This work is the result of observations while working at CERN in Geneva with many different experiments at the ISR, SPS, LEP, LHC colliders. A new model based on nuons is introduced, that allows accurate evaluations of the particle masses (mesons and baryons) and magnetic moment, computes very accurately the kinematics distributions for particles and jets observed in the p-p collisions at the LHC (elastic and inelastic) and at lower energy machines. This new model looks at a first glance in contradiction with the quark model because it can build the elementary particles with nuons only, i.e. electrons and neutrinos. However, all the existing physics involved in electron, positron and neutrino interactions may be used to explain interactions between composite particles such as protons or heavy ions.
文摘N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51974082 and 52274377)the Fundamental Research Funds for the Central Universities(Grant No.N2209001)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,Grant No.BP0719037)。
文摘A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).
基金Supported by the National Natural Science Foundation of China(No.41976012)the Key Research Program of Laoshan Laboratory(LSL)(No.LSKJ 202202502)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDB 42000000)。
文摘The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Scientific and Technological Projects for Social Development(Grant No.21DZ1202701).
文摘A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.