In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is propo...In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.展开更多
Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ...Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.展开更多
To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter val...To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter values to improve the torque performance of the motor,this paper takes the output torque capacity and torque ripple as the optimization objectives,and proposes a multi-objective layered optimization method based on the parameter hierarchical design combined with Taguchi method and response surface method(RSM).The conclusion can be drawn by comparing the electromagnetic performance of the motor before and after optimization,the proposed IPMSM based on the rotor surface notch design can not only improve the output torque,but also play an obvious inhibition effect on the torque ripple.展开更多
Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling scheme...Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller.展开更多
Rotor of Synchronous reluctance motor(SynRM)usually has multiple flux barrier structure for the purpose of higher electromagnetic torque and lower torque ripple.Two different strategies are used in this paper for roto...Rotor of Synchronous reluctance motor(SynRM)usually has multiple flux barrier structure for the purpose of higher electromagnetic torque and lower torque ripple.Two different strategies are used in this paper for rotor structure optimization and a compromised strategy for fully squeeze the potential of each related parameters is developed.Performance of resulted rotor structure is evaluated to verify the optimization procedure.展开更多
This study proposes a novel asymmetric rotor pole design for wound field synchronous machines(WFSMs),which can achieve high saliency ratio and also low torque ripple.The key point is the optimal design of the asymmetr...This study proposes a novel asymmetric rotor pole design for wound field synchronous machines(WFSMs),which can achieve high saliency ratio and also low torque ripple.The key point is the optimal design of the asymmetric rotor pole with the inverse-cosine-shaped(ICS)plus reverse 3rd harmonic shaping.The asymmetric rotor pole can help to improve the average output torque by enhancing the saliency ratio.The reverse 3rd harmonic shaping on the rotor pole surface is mainly used to reduce the torque ripple.To certify the effectivity of the proposed design,three-phase 54-slot/6-pole 4.7kW WFSMs with uniform air gap and with non-uniform air gap shaped by the ICS plus optimum reverse 3rd harmonic are utilized as the basic model and referenced model for comparison.For the referenced model,the optimum amplitude of reverse 3rd harmonic is preferred as 1/6.Finally,all electromagnetic characteristics of the investigated machines are predicted by the finite-element method(FEM).The highest saliency ratio and comparatively low torque ripple have been verified.展开更多
Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of ...Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of the synchronous machine as well as the absence of brushes and slip rings, and using a fractionally rated frequency converter. Hence, there are considerable benefits over the conventional machines, when the machine is applied to applications such as a wind turbine generator or high power adjustable speed drive. However, these benefits are obtained in slightly more complex structure, higher cost and larger dimensions in comparison to the conventional induction machine. This paper presents fundamental aspects of the three modes of operation of brushless doubly fed machine, i.e. simple induction mode, cascade induction mode, and synchronous mode. The investigation is performed by analyzing the spatial harmonic contents of the rotor magnetic flux density. The direct cross couplings between stator and rotor fields as well as, indirect cross coupling between stator fields by the special rotor of this machine is described. Furthermore, loss analysis of the machine in various modes is presented and the torque-speed curves for asynchronous modes are obtained. A 2-D magnetodynamic finite element model based on the D-180 4/8 pole prototype machine is extracted and simulated to verify the results.展开更多
This paper proposes an artificial neural network for monitoring and detecting the eccentric error of synchronous reluctance motors.Firstly,a 15 kWsynchronous reluctance motor is introduced and took as a case study to ...This paper proposes an artificial neural network for monitoring and detecting the eccentric error of synchronous reluctance motors.Firstly,a 15 kWsynchronous reluctance motor is introduced and took as a case study to investigate the effects of eccentric rotor.Then,the equivalent magnetic circuits of the studied motor are analyzed and developed,in cases of dynamic eccentric rotor and static eccentric rotor condition,respectively.After that,the analytical equations of the studied motor are derived,in terms of its air-gap flux density,electromagnetic torque,and electromagnetic force,followed by the electromagnetic finite element analyses.Then,the modal analyses of the stator and the whole motor are performed,respectively,to explore the natural frequency and the modal shape of the motor,by which the further vibrational analysis is possible to be conducted.The vibration level of the housing is furtherly studied to investigate its relationship with the rotor eccentricity,which is validated by the prototype test.Furthermore,an artificial neural network,which has 3 layers,is proposed.By taking the air-gap flux density,the electromagnetic force,and the vibrational level as inputs,and taking the eccentric distance as output,the proposed neural network is trained till the error smaller than 5%.Therefore,this neural network is obtaining the input parameters of the tested motor,based on which it is automatically monitoring and reporting the eccentric error to the upper-level control center.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
基金supported by funded by"Ye Qisun"Joint Foundation Project supported by the State Key Program of National Natural Science Foundation of China under Award U2141223.
文摘In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.
基金supported by the Liaoning Revitalization Talents Program(XLYC2007107)。
文摘To solve the problem of large torque ripple of interior permanent magnet synchronous motor(IPMSM),the rotor surface notch design method was used for V-type IPMSM.In order to accurately obtain the optimal parameter values to improve the torque performance of the motor,this paper takes the output torque capacity and torque ripple as the optimization objectives,and proposes a multi-objective layered optimization method based on the parameter hierarchical design combined with Taguchi method and response surface method(RSM).The conclusion can be drawn by comparing the electromagnetic performance of the motor before and after optimization,the proposed IPMSM based on the rotor surface notch design can not only improve the output torque,but also play an obvious inhibition effect on the torque ripple.
基金This work has been supported by the National Natural Science Foundation of China(51907129)Project Supported by Department of Science and Technology of Liaoning Province(2021-MS-236).
文摘Aiming at the problem of temperature rise of mine flameproof outer rotor permanent magnet synchronous motor,based on the fluid structure coupling method,the temperature distribution of motor under three cooling schemes of air cooling and water cooling are calculated respectively.For the structure I air cooling system,the influence of different number of heat sink on the maximum temperature rise and pressure drop of fluid channel is analyzed,and the parameters of heat sink are optimized.For the structure II air cooling system,the influence of setting fillet at the turn back of the fluid channel on the head loss in the fluid domain of the motor is analyzed,and the influence of different fillet radius on the head loss and the maximum temperature rise in the fluid domain is obtained.For the structure II water cooling system,the influence of different water flow speed on the maximum temperature rise of the motor is analyzed,and the influence of different assembly clearance of modular stator teeth and yoke on the maximum temperature rise of the motor is analyzed.The cooling effect and temperature rise distribution characteristics of the three cooling schemes are compared and analyzed.Finally,a water-cooled prototype is manufactured,and the temperature rise experiment is carried out,and the influence of the thermal deformation of fluid channel,stator yoke and stator teeth on the maximum temperature of the motor is analyzed.The results show that the calculated temperature field after considering the thermal deformation is closer to the experimental value,which verifies the accuracy of the calculation results,It also provides a reference for the selection and design of the cooling structure of the same type of PMSM electric roller.
文摘Rotor of Synchronous reluctance motor(SynRM)usually has multiple flux barrier structure for the purpose of higher electromagnetic torque and lower torque ripple.Two different strategies are used in this paper for rotor structure optimization and a compromised strategy for fully squeeze the potential of each related parameters is developed.Performance of resulted rotor structure is evaluated to verify the optimization procedure.
文摘This study proposes a novel asymmetric rotor pole design for wound field synchronous machines(WFSMs),which can achieve high saliency ratio and also low torque ripple.The key point is the optimal design of the asymmetric rotor pole with the inverse-cosine-shaped(ICS)plus reverse 3rd harmonic shaping.The asymmetric rotor pole can help to improve the average output torque by enhancing the saliency ratio.The reverse 3rd harmonic shaping on the rotor pole surface is mainly used to reduce the torque ripple.To certify the effectivity of the proposed design,three-phase 54-slot/6-pole 4.7kW WFSMs with uniform air gap and with non-uniform air gap shaped by the ICS plus optimum reverse 3rd harmonic are utilized as the basic model and referenced model for comparison.For the referenced model,the optimum amplitude of reverse 3rd harmonic is preferred as 1/6.Finally,all electromagnetic characteristics of the investigated machines are predicted by the finite-element method(FEM).The highest saliency ratio and comparatively low torque ripple have been verified.
文摘Brushless Doubly-Fed Machine has attracted considerable attention in recent years due to its advantages. It has the robustness of the squirrel cage induction machine, and the speed and power factor controllability of the synchronous machine as well as the absence of brushes and slip rings, and using a fractionally rated frequency converter. Hence, there are considerable benefits over the conventional machines, when the machine is applied to applications such as a wind turbine generator or high power adjustable speed drive. However, these benefits are obtained in slightly more complex structure, higher cost and larger dimensions in comparison to the conventional induction machine. This paper presents fundamental aspects of the three modes of operation of brushless doubly fed machine, i.e. simple induction mode, cascade induction mode, and synchronous mode. The investigation is performed by analyzing the spatial harmonic contents of the rotor magnetic flux density. The direct cross couplings between stator and rotor fields as well as, indirect cross coupling between stator fields by the special rotor of this machine is described. Furthermore, loss analysis of the machine in various modes is presented and the torque-speed curves for asynchronous modes are obtained. A 2-D magnetodynamic finite element model based on the D-180 4/8 pole prototype machine is extracted and simulated to verify the results.
文摘This paper proposes an artificial neural network for monitoring and detecting the eccentric error of synchronous reluctance motors.Firstly,a 15 kWsynchronous reluctance motor is introduced and took as a case study to investigate the effects of eccentric rotor.Then,the equivalent magnetic circuits of the studied motor are analyzed and developed,in cases of dynamic eccentric rotor and static eccentric rotor condition,respectively.After that,the analytical equations of the studied motor are derived,in terms of its air-gap flux density,electromagnetic torque,and electromagnetic force,followed by the electromagnetic finite element analyses.Then,the modal analyses of the stator and the whole motor are performed,respectively,to explore the natural frequency and the modal shape of the motor,by which the further vibrational analysis is possible to be conducted.The vibration level of the housing is furtherly studied to investigate its relationship with the rotor eccentricity,which is validated by the prototype test.Furthermore,an artificial neural network,which has 3 layers,is proposed.By taking the air-gap flux density,the electromagnetic force,and the vibrational level as inputs,and taking the eccentric distance as output,the proposed neural network is trained till the error smaller than 5%.Therefore,this neural network is obtaining the input parameters of the tested motor,based on which it is automatically monitoring and reporting the eccentric error to the upper-level control center.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.