The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base ...The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base material and configuration, the structural displacement and maximum axial stress of micro-rod of lattice structures with different sizes of microstructure are analyzed and compared.It is pointed out that different from the traditional mathematical homogenization method, EMsFEM is suitable for analyzing the structures which is constituted with lattice materials and composed of quantities of finite-sized micro-rods.The minimum weight design of structures composed of lattice material is studied with downscaling calculation of EMsFEM under stress constraints of micro-rods. The optimal design results show that the weight of the structure increases with the decrease of the size of basic sub-unit cells. The paper presents a new approach for analysis and optimization of lattice materials in complex engineering constructions.展开更多
“Four classes of enterprises above designated size”(hereinafter called four-classes enterprises)refer to objects of statistical survey that have reached a certain scale in China’s current statistical method system,...“Four classes of enterprises above designated size”(hereinafter called four-classes enterprises)refer to objects of statistical survey that have reached a certain scale in China’s current statistical method system,including four classes in national economy,namely,industrial enterprises above designated size,construction and real estate development and management enterprises above qualifications,wholesale and retail,catering and accommodation enterprises,and service enterprises above designated size,which are the primary part of national economic and social development activities.This paper is focused on analyzing the practice and difficulties in the current statistics work of four-classes enterprises,and then this paper proposes some recommendations.展开更多
The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill...The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.展开更多
Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one...Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one degree of freedom(DOF), and the power absorption efficiency is not quite satisfactory. In this paper, a 3-DOF WEC is proposed and a simplified frequency-domain dynamic model of the WEC depending on the linear potential theory is conducted. The performances of three geometries of the oscillating body including the cone, the cylinder and the hemisphere have been compared, and the results show that the hemisphere is more suitable for the 3-DOF WEC.Subsequently, the relationship among the parameters of the hemisphere is established based on the equal natural frequencies of the heave and pitch(or roll) motions, and the results show that lowering the center of gravity leads to the better power absorption in the pitch(or roll) motion. In the end, the power matrixes of different sizes of the hemispheres under different irregular waves are obtained, which can give a size design reference for engineers.展开更多
Objective: To study the stress distribution of the femoral hip prosthesis after the hip joint replacement. Methods: After the hip joint replacement, when the fenmr and prosthesis are considered as concentric cylinde...Objective: To study the stress distribution of the femoral hip prosthesis after the hip joint replacement. Methods: After the hip joint replacement, when the fenmr and prosthesis are considered as concentric cylinders with perfectly banded interface, a relatively perfect theoretical model of simulating the interracial stress transfer is established. Results: The maximum interfaeial shear stress oeeured at Z=O. At the cross-section of the femoral neck, interfacial shear stress decreased exponentially with the increases of the Z. Shear stress became very small at Z〉0. 1 m, which meant that the shear stress at the far end of the femoral hip prosthesis was very small. In order to avoid the stress concentration and femoral hip prosthesis sinking, interracial stress must remain constant and balanced with the pressure load at Z=O. The radius of the femoral hip prosthesis changed with interfacial shear stress. The maximum value of the radius occured at Z=O, then it decreased at m. Specially, a=18.2 mm at Z=10 ram, a=5.36 mm at Z=98 ram, these are ideal radius. Conclusion: A theoretical model of simulating the interfacial stress is established when the femur and prosthesis are considered as concentric cylinders. The distributions of the interfacial shear and radial stresses with the axial positions are obtained. A theoretical reference for the design of the prosthesis is provided.展开更多
Regarding sugar and salt crystallization with large single crystals,the agglomerate thermodynamics and geometric morphologies,not the dynamics,dominate the particle size distribution(PSD).To consider this issue,a PSD ...Regarding sugar and salt crystallization with large single crystals,the agglomerate thermodynamics and geometric morphologies,not the dynamics,dominate the particle size distribution(PSD).To consider this issue,a PSD design model is proposed for limited large crystal agglomeration.In this model,the agglomeration thermodynamic criticality is determined by estimating the adhesion and dispersion forces between single crystals.The geometric agglomerate morphologies are described by corresponding single crystal units stacking with porosity.By seed well-controlled of population,the key parameters of PSD(D01,D50 and D99)are precisely designed.For erythritol,the model design accuracies are 92%–99%in the 1.2 L and 10 L crystallizers,indicating that it can design PSD at various crystallization scales.Concerning the general research attention to microcrystal agglomeration kinetics(mostly active pharmaceutical ingredients),this model effectively guides the sugar and salt PSD design with limited large crystal agglomeration.展开更多
Resource-based cities are the most important players in responding to climate change and achieving low carbon development in China.An analysis of relevant data(such as the energy consumption)showed an inter-city diffe...Resource-based cities are the most important players in responding to climate change and achieving low carbon development in China.An analysis of relevant data(such as the energy consumption)showed an inter-city differentiation of CO2 emissions from energy consumption,and suggested an influence of the Industrial Enterprises above Designated Size(IEDS)in resource-based industrial cities at the prefecture level and above in different regions.Then by geographical detector technology,the sizes of each influencing mechanism on CO2 emissions from energy consumption of the IEDS were probed.This analysis showed that significant spatial differences exist for CO2 emissions from energy consumption and revealed several factors which influence the IEDS in resource-based cities.(1)In terms of unit employment,Eastern and Western resource-based cities are above the overall level of all resource-based cities;and only Coal resource-based cities far exceeded the overall level among all of the cities in the analysis.(2)In terms of unit gross industrial output value,the Eastern,Central and Western resources-based cities are all above the overall level for all the cities.Here also,only Coal resource-based cities far exceeded the overall level of all resources-based cities.Economic scale and energy structure are the main factors influencing CO2 emissions from energy consumption of the IEDS in resource-based cities.The factors influencing CO2 emissions in different regions and types of resource-based cities show significant spatial variations,and the degree of influence that any given factor exerts varies among different regions and types of resource-based cities.Therefore,individualized recommendations should be directed to different regions and types of resource-based cities,so that the strategies and measures of industrial low carbon and transformation should vary greatly according to the specific conditions that exist in each city.展开更多
To obtain bio-inspired structures with superior biological function,four bio-inspired structures named regular arrangement honeycomb structure(RAHS),staggered arrangement honeycomb structure(SAHS),floral arrangement h...To obtain bio-inspired structures with superior biological function,four bio-inspired structures named regular arrangement honeycomb structure(RAHS),staggered arrangement honeycomb structure(SAHS),floral arrangement honeycomb structure(FLAHS)and functional arrangement honeycomb structure(FUAHS)are designed by observing the microstructure of the Gideon beetle,based on the optimal size bio-inspired cells by response surface method(RSM)and particle swarm optimization(PSO)algorithm.According to Euler theory and buckling failure theory,compression deformation properties of bio-inspired structures are explained.Experiments and simulations further verify the accuracy of theoretical analysis results.The results show that energy absorption of FLAHS is,respectively,increased by 26.95%,22.85%,and 121.45%,compared with RAHS,SAHS,and FUAHS.Elastic modulus of FLAHS is 110.37%,110.37%,and 230.56% of RAHS,SAHS,and FUAHS,respectively.FLAHS perfectly inherits crashworthiness and energy absorption properties of the Gideon beetle,and FLAHS has the most stable force.Similarly,RAHS,SAHS,and FUAHS,respectively,inherit mechanical properties of the Gideon beetle top horn,the Gideon beetle middle horn,and the abdomen of the beetle.This method,designing bio-inspired structures with biological functions,can be introduced into the engineering field requiring the special function.展开更多
基金supported by the National Natural Science Foundation of China(11372060,10902018,91216201,and 11326005)the National Basic Research Program of China(2011CB610304)the Major National Science and Technology Project(2011ZX02403-002)
文摘The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base material and configuration, the structural displacement and maximum axial stress of micro-rod of lattice structures with different sizes of microstructure are analyzed and compared.It is pointed out that different from the traditional mathematical homogenization method, EMsFEM is suitable for analyzing the structures which is constituted with lattice materials and composed of quantities of finite-sized micro-rods.The minimum weight design of structures composed of lattice material is studied with downscaling calculation of EMsFEM under stress constraints of micro-rods. The optimal design results show that the weight of the structure increases with the decrease of the size of basic sub-unit cells. The paper presents a new approach for analysis and optimization of lattice materials in complex engineering constructions.
文摘“Four classes of enterprises above designated size”(hereinafter called four-classes enterprises)refer to objects of statistical survey that have reached a certain scale in China’s current statistical method system,including four classes in national economy,namely,industrial enterprises above designated size,construction and real estate development and management enterprises above qualifications,wholesale and retail,catering and accommodation enterprises,and service enterprises above designated size,which are the primary part of national economic and social development activities.This paper is focused on analyzing the practice and difficulties in the current statistics work of four-classes enterprises,and then this paper proposes some recommendations.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.51404013)the Natural Science Foundation of Anhui Province (Nos.1508085ME77 and 1508085QE89)the Open Projects of State Key Laboratory for Geomechanics & Deep Underground Engineering at the China University of Mining and Technology (No.SKLGDUEK1212)
文摘The effect of controlling strata movement in solid filling mining depends on the filling rate of the goal. However, the mechanical property of the overburden in the backfill stope and the designed size of the backfill mining workface should also be considered. In this study, we established a main roof strata model with loads in accordance with the theory of key strata to investigate the stability of the overburden in solid dense filling mining. We analyzed the stress distribution law of the main roof strata based on elastic thin plate theory. The results show that the position of the long side midpoint of the main roof strata failed more easily because of tensile yield, indicating that this position is the area where failure is likely to occur more easily. We also deduced the stability mechanics criterion of the main roof strata based on tensile yield criterion. The factors affecting the stability of the overburden in solid dense filling mining were also analyzed, including the thickness and elasticity modulus of the main roof strata, overlying strata loads, advanced distance and length of workface, and elastic foundation coefficient of backfill body. The research achievements can provide an important theoretical basis for determining the designed size of the solid dense filling mining workface.
基金financially supported by China Postdoctoral Science Foundation(Grant No.2017M611554)the National Natural Science Foundation of China(Grant No.51335007)
文摘Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one degree of freedom(DOF), and the power absorption efficiency is not quite satisfactory. In this paper, a 3-DOF WEC is proposed and a simplified frequency-domain dynamic model of the WEC depending on the linear potential theory is conducted. The performances of three geometries of the oscillating body including the cone, the cylinder and the hemisphere have been compared, and the results show that the hemisphere is more suitable for the 3-DOF WEC.Subsequently, the relationship among the parameters of the hemisphere is established based on the equal natural frequencies of the heave and pitch(or roll) motions, and the results show that lowering the center of gravity leads to the better power absorption in the pitch(or roll) motion. In the end, the power matrixes of different sizes of the hemispheres under different irregular waves are obtained, which can give a size design reference for engineers.
文摘Objective: To study the stress distribution of the femoral hip prosthesis after the hip joint replacement. Methods: After the hip joint replacement, when the fenmr and prosthesis are considered as concentric cylinders with perfectly banded interface, a relatively perfect theoretical model of simulating the interracial stress transfer is established. Results: The maximum interfaeial shear stress oeeured at Z=O. At the cross-section of the femoral neck, interfacial shear stress decreased exponentially with the increases of the Z. Shear stress became very small at Z〉0. 1 m, which meant that the shear stress at the far end of the femoral hip prosthesis was very small. In order to avoid the stress concentration and femoral hip prosthesis sinking, interracial stress must remain constant and balanced with the pressure load at Z=O. The radius of the femoral hip prosthesis changed with interfacial shear stress. The maximum value of the radius occured at Z=O, then it decreased at m. Specially, a=18.2 mm at Z=10 ram, a=5.36 mm at Z=98 ram, these are ideal radius. Conclusion: A theoretical model of simulating the interfacial stress is established when the femur and prosthesis are considered as concentric cylinders. The distributions of the interfacial shear and radial stresses with the axial positions are obtained. A theoretical reference for the design of the prosthesis is provided.
基金financially supported by the Key 647 Research and Development Project of Hebei 22372601Dthe financial support of Haihe Laboratory of Sustainable Chemical Transformations.
文摘Regarding sugar and salt crystallization with large single crystals,the agglomerate thermodynamics and geometric morphologies,not the dynamics,dominate the particle size distribution(PSD).To consider this issue,a PSD design model is proposed for limited large crystal agglomeration.In this model,the agglomeration thermodynamic criticality is determined by estimating the adhesion and dispersion forces between single crystals.The geometric agglomerate morphologies are described by corresponding single crystal units stacking with porosity.By seed well-controlled of population,the key parameters of PSD(D01,D50 and D99)are precisely designed.For erythritol,the model design accuracies are 92%–99%in the 1.2 L and 10 L crystallizers,indicating that it can design PSD at various crystallization scales.Concerning the general research attention to microcrystal agglomeration kinetics(mostly active pharmaceutical ingredients),this model effectively guides the sugar and salt PSD design with limited large crystal agglomeration.
基金The Ministry of Education on Cultivate Project Fund of Philosophy and Social Science Research Development Report(13JBGP004)
文摘Resource-based cities are the most important players in responding to climate change and achieving low carbon development in China.An analysis of relevant data(such as the energy consumption)showed an inter-city differentiation of CO2 emissions from energy consumption,and suggested an influence of the Industrial Enterprises above Designated Size(IEDS)in resource-based industrial cities at the prefecture level and above in different regions.Then by geographical detector technology,the sizes of each influencing mechanism on CO2 emissions from energy consumption of the IEDS were probed.This analysis showed that significant spatial differences exist for CO2 emissions from energy consumption and revealed several factors which influence the IEDS in resource-based cities.(1)In terms of unit employment,Eastern and Western resource-based cities are above the overall level of all resource-based cities;and only Coal resource-based cities far exceeded the overall level among all of the cities in the analysis.(2)In terms of unit gross industrial output value,the Eastern,Central and Western resources-based cities are all above the overall level for all the cities.Here also,only Coal resource-based cities far exceeded the overall level of all resources-based cities.Economic scale and energy structure are the main factors influencing CO2 emissions from energy consumption of the IEDS in resource-based cities.The factors influencing CO2 emissions in different regions and types of resource-based cities show significant spatial variations,and the degree of influence that any given factor exerts varies among different regions and types of resource-based cities.Therefore,individualized recommendations should be directed to different regions and types of resource-based cities,so that the strategies and measures of industrial low carbon and transformation should vary greatly according to the specific conditions that exist in each city.
基金funded by the National Key R&D Program of China(No.2018YFB1105100)the National Natural Science Foundation of China(No.51975246)+6 种基金Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS134)the Ascl-zytsxm(202013)the Open Project Program of Key Laboratory for Cross-Scale Micro and Nano Manufacturing,Minstry of Education,Changchun University of Science and Technology(CMNM-KF202109)the Program for JLU Science and Technology Innovative Research Team(No.2019TD-34)Jilin Scientific and Technological Development Program(20200404204YY)Interdisciplinary Research Fund for Doctoral Postgraduates of Jilin University(No.101832020DJX052)Interdisciplinary Cultivation Project for Young Teachers and Students(No.415010300078).
文摘To obtain bio-inspired structures with superior biological function,four bio-inspired structures named regular arrangement honeycomb structure(RAHS),staggered arrangement honeycomb structure(SAHS),floral arrangement honeycomb structure(FLAHS)and functional arrangement honeycomb structure(FUAHS)are designed by observing the microstructure of the Gideon beetle,based on the optimal size bio-inspired cells by response surface method(RSM)and particle swarm optimization(PSO)algorithm.According to Euler theory and buckling failure theory,compression deformation properties of bio-inspired structures are explained.Experiments and simulations further verify the accuracy of theoretical analysis results.The results show that energy absorption of FLAHS is,respectively,increased by 26.95%,22.85%,and 121.45%,compared with RAHS,SAHS,and FUAHS.Elastic modulus of FLAHS is 110.37%,110.37%,and 230.56% of RAHS,SAHS,and FUAHS,respectively.FLAHS perfectly inherits crashworthiness and energy absorption properties of the Gideon beetle,and FLAHS has the most stable force.Similarly,RAHS,SAHS,and FUAHS,respectively,inherit mechanical properties of the Gideon beetle top horn,the Gideon beetle middle horn,and the abdomen of the beetle.This method,designing bio-inspired structures with biological functions,can be introduced into the engineering field requiring the special function.