Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact...Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact surveying techniques applied to rock mass characterization offers significant advantages in terms of data numerosity,precision,and accuracy,allowing for performing a rigorous statistical analysis of the database.This fact is particularly evident when dealing with rockfall phenomena:uncertainties in spacing and orientation data could significantly amplify the uncertainties connected with in situ block size distribution(IBSD),which represents a relation between each possible value of the volume and its probability of not being exceeded.In addition to volume,block shape can be considered as a derived parameter that suffers from uncertainties.Many attempts to model the possible trajectories of blocks considering their actual shape have been proposed,aiming to reproduce the effect on motion.The authors proposed analytical equations for calculating the expected value and variance of volume distributions,based on the geometrically correct equation for block volume in the case of three discontinuity sets.They quantify and discuss the effect of both volume and shape variability through a synthetic case study.Firstly,a fictitious rock mass with three discontinuity sets is assumed as the source of rockfall.The IBSDs obtained considering different spacing datasets are quantitatively compared,and the overall uncertainty effect is assessed,proving the correctness of the proposed equations.Then,block shape distributions are obtained and compared,confirming the variability of shapes within the same IBSD.Finally,a comparison between trajectory simulations on the synthetic slope is reported,aiming to highlight the effects of the propagation of uncertainties to block volume and shape estimation.The benefits of an approach that can quantify the uncertainties are discussed from the perspective of improving the reliability of simulations.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order...The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not on...A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.展开更多
In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions...In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions should be fulfilled for MDBMs in order to guarantee the A-stabilities. The explicit expressions of the polynomialsP(h) and Q(h) in the stability functions h(h)=P(h)/Q(h)are given. Furthermore, we prove P(-h)-Q(h). With the aid of symbolic computations and the expressions of diagonal Fade approximations, we obtained the biggest block size k of the A-stable MDBM for any given l (the order of the highest derivatives used in MDBM,l>1)展开更多
Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear...Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear strength are the factors which significantly modify the working environments in the vicinity of the openings. Therefore, a detailed tunnel stability assessment is critically important based on the field data collection on the excavated tunnel's face. In this context, intact as well as rock mass strength and deformation modulus is obtained from laboratory tests for each rock type encountered in the study area. Finite element method(FEM) is used for stability analysis purpose by parametrically varying rock joint persistence, spacing and shear strength parameters, until the condition of overbreak is reached. Another case of marginally stable condition is also obtained based on the same parameters. The results show that stability of tunnels is highly influenced by these parameters and the size of overbreak is controlled by joint persistence and spacing. Garnetiferous schist and slate characterized using high persistence show the development of large plastic zones but small block size, depending upon joint spacing; whereas low persistence, low spacing and low shear strength in marble and quartzite create rock block fall condition.展开更多
Analyzing large prehistoric rock avalanches provides significant data for evaluating the disaster posed by these relatively infrequent but destructive geological events. This paper attempts to study the characteristic...Analyzing large prehistoric rock avalanches provides significant data for evaluating the disaster posed by these relatively infrequent but destructive geological events. This paper attempts to study the characteristics and dynamics of the Ganqiuchi granitic rock avalanche, in the middle of the northern margin of Qinling Mountains, 30 km to the south of Xi’an, Shaanxi Province, China. In plane view, this rock avalanche is characterized by source area, accumulation area and dammed lake area. Based on previous studies, historical records and regional geological data, the major trigger of the Ganqiuchi rock avalanche is considered to be a strong paleo-earthquake with tremendous energy. The in situ deposit block size distributions of the intact rock mass and the debris deposits are presented and analyzed by using a simple model for estimating the number of fragmentation cycles that the blocks underwent. The results show that the primary controlling factor of the fragmentation process is the pre-existing fractures, and there is a relationship between the potential energy and the fragmentation energy: the latter is approximately 20% of the former. Based on the dynamic discrete element technique, the study proposes a four-stage model for the dynamic course of the Ganqiuchi rock avalanche:(1) failing;(2) highspeed sliding;(3) collision with obstacles;(4) decelerated sliding, which has implication for hazard assessment of the potential rock avalanches in China and other countries with similar geological setting.展开更多
Disparity is the geometrical difference between images of a stereoscopic pair. In this paper we give a comprehensive analysis of the statistical characteristics of disparity. Based on experiments, we discuss the rela...Disparity is the geometrical difference between images of a stereoscopic pair. In this paper we give a comprehensive analysis of the statistical characteristics of disparity. Based on experiments, we discuss the relations between disparity, depth and object relation between block size and disparity estimation, and the influence of error criteria on disparity estimation.展开更多
In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an opt...In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper.First,Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator.Then,a real time block matching algorithm is researched and its block size is optimized with a standard object.Finally,experiments are performed with respect to a nanometer movement platform system,and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.展开更多
文摘Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact surveying techniques applied to rock mass characterization offers significant advantages in terms of data numerosity,precision,and accuracy,allowing for performing a rigorous statistical analysis of the database.This fact is particularly evident when dealing with rockfall phenomena:uncertainties in spacing and orientation data could significantly amplify the uncertainties connected with in situ block size distribution(IBSD),which represents a relation between each possible value of the volume and its probability of not being exceeded.In addition to volume,block shape can be considered as a derived parameter that suffers from uncertainties.Many attempts to model the possible trajectories of blocks considering their actual shape have been proposed,aiming to reproduce the effect on motion.The authors proposed analytical equations for calculating the expected value and variance of volume distributions,based on the geometrically correct equation for block volume in the case of three discontinuity sets.They quantify and discuss the effect of both volume and shape variability through a synthetic case study.Firstly,a fictitious rock mass with three discontinuity sets is assumed as the source of rockfall.The IBSDs obtained considering different spacing datasets are quantitatively compared,and the overall uncertainty effect is assessed,proving the correctness of the proposed equations.Then,block shape distributions are obtained and compared,confirming the variability of shapes within the same IBSD.Finally,a comparison between trajectory simulations on the synthetic slope is reported,aiming to highlight the effects of the propagation of uncertainties to block volume and shape estimation.The benefits of an approach that can quantify the uncertainties are discussed from the perspective of improving the reliability of simulations.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
基金Sponsored by the National Natural Science Foundation of China(60772066)
文摘The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
文摘A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.
文摘In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions should be fulfilled for MDBMs in order to guarantee the A-stabilities. The explicit expressions of the polynomialsP(h) and Q(h) in the stability functions h(h)=P(h)/Q(h)are given. Furthermore, we prove P(-h)-Q(h). With the aid of symbolic computations and the expressions of diagonal Fade approximations, we obtained the biggest block size k of the A-stable MDBM for any given l (the order of the highest derivatives used in MDBM,l>1)
基金The financial support provided by the Hydro China Scientific Research Project (GW-KJ-2013-11)
文摘Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear strength are the factors which significantly modify the working environments in the vicinity of the openings. Therefore, a detailed tunnel stability assessment is critically important based on the field data collection on the excavated tunnel's face. In this context, intact as well as rock mass strength and deformation modulus is obtained from laboratory tests for each rock type encountered in the study area. Finite element method(FEM) is used for stability analysis purpose by parametrically varying rock joint persistence, spacing and shear strength parameters, until the condition of overbreak is reached. Another case of marginally stable condition is also obtained based on the same parameters. The results show that stability of tunnels is highly influenced by these parameters and the size of overbreak is controlled by joint persistence and spacing. Garnetiferous schist and slate characterized using high persistence show the development of large plastic zones but small block size, depending upon joint spacing; whereas low persistence, low spacing and low shear strength in marble and quartzite create rock block fall condition.
基金financially supported by the National Natural Science Foundation of China(grant numbers 4167020392)the State Key Laboratory Foundation of Geohazard Prevention and Geoenvironment Protection(SKLGP2018K015)the Geological Investigation Project fromChina Geological Survey(DD20160336)
文摘Analyzing large prehistoric rock avalanches provides significant data for evaluating the disaster posed by these relatively infrequent but destructive geological events. This paper attempts to study the characteristics and dynamics of the Ganqiuchi granitic rock avalanche, in the middle of the northern margin of Qinling Mountains, 30 km to the south of Xi’an, Shaanxi Province, China. In plane view, this rock avalanche is characterized by source area, accumulation area and dammed lake area. Based on previous studies, historical records and regional geological data, the major trigger of the Ganqiuchi rock avalanche is considered to be a strong paleo-earthquake with tremendous energy. The in situ deposit block size distributions of the intact rock mass and the debris deposits are presented and analyzed by using a simple model for estimating the number of fragmentation cycles that the blocks underwent. The results show that the primary controlling factor of the fragmentation process is the pre-existing fractures, and there is a relationship between the potential energy and the fragmentation energy: the latter is approximately 20% of the former. Based on the dynamic discrete element technique, the study proposes a four-stage model for the dynamic course of the Ganqiuchi rock avalanche:(1) failing;(2) highspeed sliding;(3) collision with obstacles;(4) decelerated sliding, which has implication for hazard assessment of the potential rock avalanches in China and other countries with similar geological setting.
基金the National Natural Science Foundation of China(69972027)
文摘Disparity is the geometrical difference between images of a stereoscopic pair. In this paper we give a comprehensive analysis of the statistical characteristics of disparity. Based on experiments, we discuss the relations between disparity, depth and object relation between block size and disparity estimation, and the influence of error criteria on disparity estimation.
基金supported by the National Natural Science Foundation of China(Grant No.61305025)
文摘In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper.First,Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator.Then,a real time block matching algorithm is researched and its block size is optimized with a standard object.Finally,experiments are performed with respect to a nanometer movement platform system,and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.