A solution of virtual human skeleton system is proposed. Some issues on integration of anatomical geometry, biodynamics and computer animation are studied. The detailed skeleton system model that incorporates the biod...A solution of virtual human skeleton system is proposed. Some issues on integration of anatomical geometry, biodynamics and computer animation are studied. The detailed skeleton system model that incorporates the biodynamic and geometric characteristics of a human skeleton system allows some performance studies in greater detail than that performed before. It may provide an effective and convenient way to analyze and evaluate the movement performance of a human body when the personalized anatomical data are used in the models. An example shows that the proposed solution is effective for the stated problems.展开更多
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues,including the skeletal and immune systems.Recent studies have elucidated the intricate ...Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues,including the skeletal and immune systems.Recent studies have elucidated the intricate bidirectional interactions between these two systems.展开更多
High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow ...High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.展开更多
Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great chall...Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great challenge,such as uneven metallic deposition and dendrite formation during cycling.Carbon skeletons as sodiophilic hosts can alleviate the dendrite formation during the plating/stripping.For the carbon skeleton,how to rationalize the design sodiophilic interfaces between the sodium metal and carbon species remains key to developing desirable Na anodes.Herein,we fabricated four kinds of structural features for carbon skeletons using conventional calcination and flash Joule heating.The roles of conductivity,defects,oxygen content,and the distribution of graphite for the deposition of metallic sodium were discussed in detail.Based on interface engineering,the J1600 electrode,which has abundant Na-C species on its surface,showed the highest sodiophilic.There are uniform and rich F-Na species distributed in the inner solid electrolyte interface layer.This study investigated the different Na-deposition behavior in carbon hosts with distinct graphitic arrangements to pave the way for designing and optimizing advanced electrode materials.展开更多
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effe...Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effects,drug resistance,and limited improvements in survival and quality of life.Therefore,it is crucial to discover and develop new medications targeting GC that are highly effective and have minimal toxicity.In previous studies,the total terpene extract from the stem of Celastrus orbiculatus demonstrated anti-GC activity;however,the specific mechanism was unclear.Our research utilising coimmunoprecipitation-mass spectrometry(Co-IP-MS),polypyrimidine tract binding protein 1(ptbp1)clustered regularly interspaced short palindromic repeat-associated protein 9(Cas9)-knockout(KO)mouse model,tissue microarray,and functional experiments suggests that alpha actinin-4(ACTN4)could be a significant biomarker of GC.PTBP1 influences actin cytoskeleton restructuring in GC cells by interacting with ACTN4.Celastrus orbiculatus stem extract(COE)may directly target ACTN4 and affect the interaction between PTBP1 and ACTN4,thereby exerting anti-GC effects.展开更多
By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite d...By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.展开更多
In this paper, a method and algorithm of skeleton extraction based on binary mathematical morphology is presented. Sequential structuring elements (SEs) is also studied, which is the key problem of skeleton extraction...In this paper, a method and algorithm of skeleton extraction based on binary mathematical morphology is presented. Sequential structuring elements (SEs) is also studied, which is the key problem of skeleton extraction. The examples of boiler flame image processing show that the detected skeletons can present the geometric shape of flame images well.展开更多
Two elongatoolithid dinosaur eggs from the Upper Cretaceous of Ganzhou, Jiangxi Province and the embryonic skeletons they bear are described. They represent the first oviraptorosaurian eggs with embryonic skeletons in...Two elongatoolithid dinosaur eggs from the Upper Cretaceous of Ganzhou, Jiangxi Province and the embryonic skeletons they bear are described. They represent the first oviraptorosaurian eggs with embryonic skeletons in China and provide the first example that an oospecies can be correlated to certain dinosaur taxon/taxa. The two eggs are the same as the pair of the eggs inside a female oviraptorosaurian pelvis from the same horizon of the same area in both macro- and micro-structures of the egg shells, and can he referred to the oospecies, Macroolithus yaotunensis Zhao, 1975. The morphology of the preserved part of the embryonic skeletons indicates that they may have been laid by an oviraptorid, Heyuannia huangi from Guangdong Province or a closely related oviraptorosaurian, which may have been lived in the Ganzhou area too in the Late Cretaceous. The embryonic skeletons of the two eggs are not in the same developing stage. In one of the eggs, the postzygapophysis of the preserved vertebrae are well ossified, indicating that it was just hatched.展开更多
Lithium(Li) metal is considered as the most promising anode material for the next-generation high performance Li batteries.However,the uncontrollable dendritic growth impedes its commercial application.Herein,we desig...Lithium(Li) metal is considered as the most promising anode material for the next-generation high performance Li batteries.However,the uncontrollable dendritic growth impedes its commercial application.Herein,we design a 3 D Si@carbon nanofibers(CNFs)@ZnO-ZnO-Cu skeleton(SCZ) for guiding the homogeneous bottom-growth of Li metal.The top LixSi@CNFs and bottom LiyZn@CNFs layers could form conductivity and overpotential gradient to avoid the "top-growth" of Li metal.Moreover,the top lithiophilic LixSi@CNFs layer could regulate the nucleation and deposition of Li-ions even if the lithium dendrites grow out of the skeleton under high capacity Li deposition(30 mAh cm^(-2)).As a result,the SCZ-Li||LiFePO_(4) full cell delivers a high capacity of ~104 mAh g^(-1)(~94.82% capacity retention) after 2000 cycles at 5 C, elucidating the potential application of the 3 D double-gradient Li metal composite anode.展开更多
Current studies have shown that the spatial-temporal graph convolutional network(STGCN)is effective for skeleton-based action recognition.However,for the existing STGCN-based methods,their temporal kernel size is usua...Current studies have shown that the spatial-temporal graph convolutional network(STGCN)is effective for skeleton-based action recognition.However,for the existing STGCN-based methods,their temporal kernel size is usually fixed over all layers,which makes them cannot fully exploit the temporal dependency between discontinuous frames and different sequence lengths.Besides,most of these methods use average pooling to obtain global graph feature from vertex features,resulting in losing much fine-grained information for action classification.To address these issues,in this work,the authors propose a novel spatial attentive and temporal dilated graph convolutional network(SATD-GCN).It contains two important components,that is,a spatial attention pooling module(SAP)and a temporal dilated graph convolution module(TDGC).Specifically,the SAP module can select the human body joints which are beneficial for action recognition by a self-attention mechanism and alleviates the influence of data redundancy and noise.The TDGC module can effectively extract the temporal features at different time scales,which is useful to improve the temporal perception field and enhance the robustness of the model to different motion speed and sequence length.Importantly,both the SAP module and the TDGC module can be easily integrated into the ST-GCN-based models,and significantly improve their performance.Extensive experiments on two large-scale benchmark datasets,that is,NTU-RGB+D and Kinetics-Skeleton,demonstrate that the authors’method achieves the state-of-the-art performance for skeleton-based action recognition.展开更多
Seven hundred and twenty one-day-old AA broiler chickens were randomly allocated into two groups (male and female for half), and put into two identical closed houses with different lighting programs. The first house...Seven hundred and twenty one-day-old AA broiler chickens were randomly allocated into two groups (male and female for half), and put into two identical closed houses with different lighting programs. The first house was illuminated by using common incandescence light, and the second one was added with ultraviolet radiation light from the second week onwards. The birds lived in a floor with litters and free access to feed and water. Temperature, humidity and immune programs in the two houses were similar. The results showed that under ultraviolet radiation, the growth speed of skeleton increased (the shank length was significantly increased in the third week, P〈0.05; the leg muscle weight was significantly improved by 3.87%, P〈 0.05); the skeleton quality improved (the density of skeleton mineralization was significantly increased by 6.11%, P 〈 0.01; serum calcium, phosphorus, and alkaline phosphatase activity were all improved); and the growth performance was improved (feed conversion ratio was improved by 1.4% averagely; the uniformity of body weight, the shank length, the inclined body length and body height were significantly improved) in broiler chicken.展开更多
Osteoporotic fractures are a major public health problem worldwide, but incidence varies greatly across racial groups and geographic regions. Recent work suggests that the incidence of osteoporotic fracture is rising ...Osteoporotic fractures are a major public health problem worldwide, but incidence varies greatly across racial groups and geographic regions. Recent work suggests that the incidence of osteoporotic fracture is rising among Asian populations. Studies comparing areal bone mineral density and fracture across races generally indicate lower bone mineral density in Asian individuals including the Chinese, but this does not reflect their relatively low risk of non-vertebral fractures. In contrast, the Chinese have relatively high vertebral fracture rates similar to that of Caucasians. The paradoxically low risk for some types of fractures among the Chinese despite their low areal bone mineral density has been elucidated in part by recent advances in skeletal imaging. New techniques for assessing bone quality non-invasively demonstrate that the Chinese compensate for smaller bone size by differences in hip geometry and microstructural skeletal organization. Studies evaluating factors influencing racial differences in bone remodeling, as well as bone acquisition and loss, may further elucidate racial variation in bone microstructure. Advances in understanding the microstructure of the Chinese skeleton have not only helped to explain the epidemiology of fracture in the Chinese, but may also provide insight into the epidemiology of fracture in other races as well.展开更多
A new specimen discovered from the Falang Formation in northeastern Yunnan represents the most complete skeleton of Triassic pistosauroids. The new specimen is referred to Yunguisaurus Cheng et al., 2006 on the basis ...A new specimen discovered from the Falang Formation in northeastern Yunnan represents the most complete skeleton of Triassic pistosauroids. The new specimen is referred to Yunguisaurus Cheng et al., 2006 on the basis of the skull features, such as the presence of a separated nasal entering the external naris, a large pineal foramen located at the frontal/parietal suture and an interpterygoid vacuity with a narrow anterior extension. The new specimen differs from the type species of Yunguisaurus liae Cheng et al., 2006 in some aspects. Most of these differences can be attributed to ontogenetic variations. The new specimen is provisionally considered as Yunguisaurus cf. liae although its relatively short snout of the skull and slenderer hyoid may not be explained ontogenetically. Whether or not the new specimen represents a different taxon has to wait for a detailed study of the whole skeleton.展开更多
Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction,wearable robotics,rehabilitation robotics,etc.In this paper,the authors report on the design,an...Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction,wearable robotics,rehabilitation robotics,etc.In this paper,the authors report on the design,analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell.The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal.The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast,simple and straightforward manner.The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links.A prototype is fabricated to conduct experiments for the assessment of the proposed concept.The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.展开更多
Salvianolic acid G,a caffeic acid dimer with a novel tetracyclic skeleton was isolated from the roots of Salvia miltiorrhiza.Its structure was elucidated by chemical and spectral analysis,especially by 2D NMR analysis.
文摘A solution of virtual human skeleton system is proposed. Some issues on integration of anatomical geometry, biodynamics and computer animation are studied. The detailed skeleton system model that incorporates the biodynamic and geometric characteristics of a human skeleton system allows some performance studies in greater detail than that performed before. It may provide an effective and convenient way to analyze and evaluate the movement performance of a human body when the personalized anatomical data are used in the models. An example shows that the proposed solution is effective for the stated problems.
基金supported by the National Key R&D Program of China (2021YFA1101500)Wuhan Science and Technology Bureau (2022020801020464)+1 种基金partially supported by University Grants Committee,Research Grants Council of the Hong Kong Special Administrative Region,China (14113723,N_CUHK472/22,T13-402/17-N and AoE/M-402/20)Direct Grant of CUHK (2022.042)。
文摘Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues,including the skeletal and immune systems.Recent studies have elucidated the intricate bidirectional interactions between these two systems.
基金This work was financially supported by the National Natural Science Foundation of China(52130510,62071120,52075097,52205454,52375413)the Natural Science Foundation of Jiangsu Province(BE2022066,BZ2023043,BK20202006,BK20211562)Science and Technology Program of Suzhou,Jiangsu Province,China(SYG202302).
文摘High-performance microwave absorption(MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C–Co frameworks, was prepared to develop multiwalled carbon nanotubes(MWCNTs). A high impedance and suitable morphology were guaranteed by the C–Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core–shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss(RLmin) was-70.70 d B. At a thickness of 1.861 mm, the sample calcined at 700 ℃ had a RLmin of-63.25 d B. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core–shell composite MA materials with magnetoelectric synergy.
基金supported by the National Natural Science Foundation of China(32271799,31870570)the Science and Technology Plan of Fujian Provincial,China(3502ZCQXT2022001,2020H4026,2022G02020 and 2022H6002)the Scientific Research Start–up Funding for Special Professor of Minjiang Scholars。
文摘Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great challenge,such as uneven metallic deposition and dendrite formation during cycling.Carbon skeletons as sodiophilic hosts can alleviate the dendrite formation during the plating/stripping.For the carbon skeleton,how to rationalize the design sodiophilic interfaces between the sodium metal and carbon species remains key to developing desirable Na anodes.Herein,we fabricated four kinds of structural features for carbon skeletons using conventional calcination and flash Joule heating.The roles of conductivity,defects,oxygen content,and the distribution of graphite for the deposition of metallic sodium were discussed in detail.Based on interface engineering,the J1600 electrode,which has abundant Na-C species on its surface,showed the highest sodiophilic.There are uniform and rich F-Na species distributed in the inner solid electrolyte interface layer.This study investigated the different Na-deposition behavior in carbon hosts with distinct graphitic arrangements to pave the way for designing and optimizing advanced electrode materials.
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:82274603 and 82104946)the Natural Science Foundation of Jiangsu Province,China(Grant No.:BK20210817)+3 种基金the Traditional Chinese Medicine Science and Technology Development Project of Jiangsu Province,China(Project code:QN202008)the Young Scientific and Technological Talents Uplift Project of Jiangsu Association of Integrated Traditional Chinese and Western Medicine,China(Grant No.:JSZXTJ-2024-A05)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.:KYCX21_3295)the Yangzhou University Graduate Student International Academic Exchange Special Fund Project,China.Thanks for the Graphical abstract drawn。
文摘Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effects,drug resistance,and limited improvements in survival and quality of life.Therefore,it is crucial to discover and develop new medications targeting GC that are highly effective and have minimal toxicity.In previous studies,the total terpene extract from the stem of Celastrus orbiculatus demonstrated anti-GC activity;however,the specific mechanism was unclear.Our research utilising coimmunoprecipitation-mass spectrometry(Co-IP-MS),polypyrimidine tract binding protein 1(ptbp1)clustered regularly interspaced short palindromic repeat-associated protein 9(Cas9)-knockout(KO)mouse model,tissue microarray,and functional experiments suggests that alpha actinin-4(ACTN4)could be a significant biomarker of GC.PTBP1 influences actin cytoskeleton restructuring in GC cells by interacting with ACTN4.Celastrus orbiculatus stem extract(COE)may directly target ACTN4 and affect the interaction between PTBP1 and ACTN4,thereby exerting anti-GC effects.
基金supported by the National Nature Science Foundation of China(Grant No.41174114)Important National Science and Technology Specific Projects(Grant No.2011ZX05025-005-010)
文摘By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective.
文摘In this paper, a method and algorithm of skeleton extraction based on binary mathematical morphology is presented. Sequential structuring elements (SEs) is also studied, which is the key problem of skeleton extraction. The examples of boiler flame image processing show that the detected skeletons can present the geometric shape of flame images well.
基金supported by research grants from the NMNS and the National Science Council of RO China(NSC 96-2116-M-178-001) to Cheng Y.-N.the Ministry of Land and Resources,the Ministry of Science and Technology(973 Project,2006CB701405) and China Geological Survey for supportsupported by the NMNS for his sabbatical stay and grants from Canadian Museum of Nature,Canada
文摘Two elongatoolithid dinosaur eggs from the Upper Cretaceous of Ganzhou, Jiangxi Province and the embryonic skeletons they bear are described. They represent the first oviraptorosaurian eggs with embryonic skeletons in China and provide the first example that an oospecies can be correlated to certain dinosaur taxon/taxa. The two eggs are the same as the pair of the eggs inside a female oviraptorosaurian pelvis from the same horizon of the same area in both macro- and micro-structures of the egg shells, and can he referred to the oospecies, Macroolithus yaotunensis Zhao, 1975. The morphology of the preserved part of the embryonic skeletons indicates that they may have been laid by an oviraptorid, Heyuannia huangi from Guangdong Province or a closely related oviraptorosaurian, which may have been lived in the Ganzhou area too in the Late Cretaceous. The embryonic skeletons of the two eggs are not in the same developing stage. In one of the eggs, the postzygapophysis of the preserved vertebrae are well ossified, indicating that it was just hatched.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51701169,51871188 and 51931006)the National Key R&D Program of China(Grant No.2016YFA0202602)+1 种基金the Natural Science Foundation of Fujian Province of China(No.2019J06003)the "Double-First Class" Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Lithium(Li) metal is considered as the most promising anode material for the next-generation high performance Li batteries.However,the uncontrollable dendritic growth impedes its commercial application.Herein,we design a 3 D Si@carbon nanofibers(CNFs)@ZnO-ZnO-Cu skeleton(SCZ) for guiding the homogeneous bottom-growth of Li metal.The top LixSi@CNFs and bottom LiyZn@CNFs layers could form conductivity and overpotential gradient to avoid the "top-growth" of Li metal.Moreover,the top lithiophilic LixSi@CNFs layer could regulate the nucleation and deposition of Li-ions even if the lithium dendrites grow out of the skeleton under high capacity Li deposition(30 mAh cm^(-2)).As a result,the SCZ-Li||LiFePO_(4) full cell delivers a high capacity of ~104 mAh g^(-1)(~94.82% capacity retention) after 2000 cycles at 5 C, elucidating the potential application of the 3 D double-gradient Li metal composite anode.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFB1600600。
文摘Current studies have shown that the spatial-temporal graph convolutional network(STGCN)is effective for skeleton-based action recognition.However,for the existing STGCN-based methods,their temporal kernel size is usually fixed over all layers,which makes them cannot fully exploit the temporal dependency between discontinuous frames and different sequence lengths.Besides,most of these methods use average pooling to obtain global graph feature from vertex features,resulting in losing much fine-grained information for action classification.To address these issues,in this work,the authors propose a novel spatial attentive and temporal dilated graph convolutional network(SATD-GCN).It contains two important components,that is,a spatial attention pooling module(SAP)and a temporal dilated graph convolution module(TDGC).Specifically,the SAP module can select the human body joints which are beneficial for action recognition by a self-attention mechanism and alleviates the influence of data redundancy and noise.The TDGC module can effectively extract the temporal features at different time scales,which is useful to improve the temporal perception field and enhance the robustness of the model to different motion speed and sequence length.Importantly,both the SAP module and the TDGC module can be easily integrated into the ST-GCN-based models,and significantly improve their performance.Extensive experiments on two large-scale benchmark datasets,that is,NTU-RGB+D and Kinetics-Skeleton,demonstrate that the authors’method achieves the state-of-the-art performance for skeleton-based action recognition.
文摘Seven hundred and twenty one-day-old AA broiler chickens were randomly allocated into two groups (male and female for half), and put into two identical closed houses with different lighting programs. The first house was illuminated by using common incandescence light, and the second one was added with ultraviolet radiation light from the second week onwards. The birds lived in a floor with litters and free access to feed and water. Temperature, humidity and immune programs in the two houses were similar. The results showed that under ultraviolet radiation, the growth speed of skeleton increased (the shank length was significantly increased in the third week, P〈0.05; the leg muscle weight was significantly improved by 3.87%, P〈 0.05); the skeleton quality improved (the density of skeleton mineralization was significantly increased by 6.11%, P 〈 0.01; serum calcium, phosphorus, and alkaline phosphatase activity were all improved); and the growth performance was improved (feed conversion ratio was improved by 1.4% averagely; the uniformity of body weight, the shank length, the inclined body length and body height were significantly improved) in broiler chicken.
基金supported by NIH grants K23 AR053507, a National Osteoporosis Foundation grant, and the Mary and David Hoar Fellowship Program of the New York Community Trust and the New York Academy of Medicine
文摘Osteoporotic fractures are a major public health problem worldwide, but incidence varies greatly across racial groups and geographic regions. Recent work suggests that the incidence of osteoporotic fracture is rising among Asian populations. Studies comparing areal bone mineral density and fracture across races generally indicate lower bone mineral density in Asian individuals including the Chinese, but this does not reflect their relatively low risk of non-vertebral fractures. In contrast, the Chinese have relatively high vertebral fracture rates similar to that of Caucasians. The paradoxically low risk for some types of fractures among the Chinese despite their low areal bone mineral density has been elucidated in part by recent advances in skeletal imaging. New techniques for assessing bone quality non-invasively demonstrate that the Chinese compensate for smaller bone size by differences in hip geometry and microstructural skeletal organization. Studies evaluating factors influencing racial differences in bone remodeling, as well as bone acquisition and loss, may further elucidate racial variation in bone microstructure. Advances in understanding the microstructure of the Chinese skeleton have not only helped to explain the epidemiology of fracture in the Chinese, but may also provide insight into the epidemiology of fracture in other races as well.
文摘A new specimen discovered from the Falang Formation in northeastern Yunnan represents the most complete skeleton of Triassic pistosauroids. The new specimen is referred to Yunguisaurus Cheng et al., 2006 on the basis of the skull features, such as the presence of a separated nasal entering the external naris, a large pineal foramen located at the frontal/parietal suture and an interpterygoid vacuity with a narrow anterior extension. The new specimen differs from the type species of Yunguisaurus liae Cheng et al., 2006 in some aspects. Most of these differences can be attributed to ontogenetic variations. The new specimen is provisionally considered as Yunguisaurus cf. liae although its relatively short snout of the skull and slenderer hyoid may not be explained ontogenetically. Whether or not the new specimen represents a different taxon has to wait for a detailed study of the whole skeleton.
基金Supported in part by National Key Research and Development Program of China(Grant No.2017YFE0111300)National Natural Science Foundation of China(Grant No.51875334)State Key Lab of Digital Manufacturing Equipment and Technology(Huazhong University of Science and Technology)(Grant No.DMETKF2019007).
文摘Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction,wearable robotics,rehabilitation robotics,etc.In this paper,the authors report on the design,analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell.The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal.The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast,simple and straightforward manner.The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links.A prototype is fabricated to conduct experiments for the assessment of the proposed concept.The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.
文摘Salvianolic acid G,a caffeic acid dimer with a novel tetracyclic skeleton was isolated from the roots of Salvia miltiorrhiza.Its structure was elucidated by chemical and spectral analysis,especially by 2D NMR analysis.